
Machine Learning Notes Ahmad Humayun

1 Probability

• Given a joint distribution P(A,B), the Product Rule:

P(A,B) = P(A ∧B) = P(A|B)P(B) (1.1)

Marginal distribution or called the sum rule:

P(A) =
∑
b

P(A,B) =
∑
b

P(A|B = b)P(B = b) (1.2)

Conditional Probability:

P(A|B) =
P(A,B)

P(B)
if P(B) > 0 (1.3)

Bayes Rule//Bayes Theorem:

posterior︷ ︸︸ ︷
P(A = a|B = b) =

P(A = a,B = b)

P(B = b)︸ ︷︷ ︸
evidence

=

likelihood︷ ︸︸ ︷
P(B = b|A = a)

prior︷ ︸︸ ︷
P(A = a)∑

a′

P(B = b|A = a′)P(A = a′)︸ ︷︷ ︸
evidence / marginal likelihood

(1.4)

• Monte Carlo approximation: When you generate a new distribution by change of variables, monte carlo
sampling can be used to approximate the new distribution. This would be approximated from the empirical

distribution generated from the sampling (MLPP 2.7).
√

σ̂2

S is called the empirical standard error and is

an estimate of our uncertainty about our estimate of the mean from the empirical distribution. This shows
the more the number of samples S, the lower the standard error (MLPP 2.7.3).

• Entropy of a random variable X is the measure of uncertainty. Given a distribution with K states, it
measures the uncertainty given the distribution. Minimum value is 0 (no uncertainty), and maximum entropy
is log2K (MLPP 2.8.1). Entropy is the average number of bits needed to encode a distribution.

• Cross Entropy is the average number of bits needed to encode data coming from a source with distribution
p and we encoded it with distribution q rather than p (MLPP 2.8.2).

• Kullback-Leibler (KL) divergence is the measure of the dissimilarity between two probability distribu-
tions. In other words its the average number of extra bits to encode data of distribution p in distribution q
(MLPP 2.8.2). KL divergence is 0 iff p ≡ q.

• Mutual Information tells how much knowing one variable tells us about another variable, i.e. it is the
reduction in uncertainty about X after observing Y . This is done by seeing how similar the joint distribution
P(X,Y) is to the factored distribution P(X)P(Y). This ensures that mutual information is 0 iff the variables
are independent (MLPP 2.8.3). This is unlike correlation coefficient which is 0 when variables are independent,
but it can also be zero when variables are dependent.

• Pointwise mutual information is the amount we learn from updating the prior P(X) into the posterior
P(X|Y). MI is the expected value of PMI (MLPP 2.8.3).

• Mutual information is usually defined for discrete distributions. For continuous variables you can discretize
by histogramming them but that is easily perturbed by bin boundaries and bin sizes. A more robust way is
to try different bin sizes and locations and find the configuration which maximizes MI. This statistic is called
Maximal Information Criterion (MIC). MIC can capture really non-linear and one-to-many dependence
between variables which correlation coefficient can’t (MLPP 2.8.3.1).

1

Ahmad Humayun Machine Learning Notes

2 Generative Models for Discrete Data

• Psychological research has shown that people can learn concepts from positive examples alone (MLPP 3.2).

• The posterior prediction can be done by seeing on what set of hypothesis spaces of concepts, H, does the
data fit on. Hypothesis space is just a set of different hypothesis to fit a concept (MLPP 3.2). The subset of
H which fits the data is called the version space.

• There might be multiple hypothesis in the version space, so the question is which hypothesis is the best one.
You can apply the size principle which finds the simplest hypothesis to model the data (this is Occam’s
razor) (MLPP 3.2.1).

• There might be a un-natural/complicated hypothesis which produces a better likelihood to explain the data.
In this case you can use a Prior to give lower probability to un-natural hypothesis. This gives you the ability
to insert your subjective opinions or background knowledge for Bayesian reasoning (MLPP 3.2.2).

• Given that we want to find the best hypothesis h which explains the data, we have the following bayesian
reasoning:

P(h|D) =
P(h)I(D ∈ h)/|h|N∑

h′∈H P(D, h′)
(2.1)

When we have enough data, the posterior becomes peaked on a single concept, namely the Maximum a
Posteriori (MAP) estimate:

P(h|D) = δĥMAP(h) (2.2)

where ĥMAP = arg maxh P(h|D) which is the posterior mode (MLPP 3.2.3).

• Since the likelihood term in equation 2.1 depends on N ; increasing it would diminish the influence of the prior
in a MAP estimate. Hence, a MAP estimate converges to the Maximum Likelihood Estimate (MLE):

ĥMLE = arg max
h

logP(D|h) (2.3)

which says that the data overwhelms the prior (MLPP 3.2.3).

• Sufficient Statistics of a data are all the parameters needed to know the about the data to infer any
parameters. For instance for 6 sided die rolled N times, the sufficient statistics for inferring parameters for
a Dirichlet-multinomial model would be N1, N2, N3, N4, N5, and N where Ni is the number of times i was
rolled (MLPP 3.3.1).

• Overfitting and the black swan paradox happens when the sample size is small. When we just consider
the MLE (ignore a prior - or have a uniform prior), the estimate might indicate for instance that a head is
impossible because the 3 samples were all tails. This is called the Zero count problem or the sparse data
problem (MLPP 3.3.4.1).

• When using a uniform prior (an uninformative prior) we always get the MLE solution.

• Näıve Bayes Classifier is a classifier which applies Bayes theorem with strong (näıve) independence assumptions
(MLPP 3.5). It is a generative approach. Since we suppose independence, it requires us to specify the class
conditional distribution (P(x|y = c)) for each feature separately. Hence, the class conditional density becomes:

P(x|y = c, θ) =

D∏
j=1

P(xj |y = c, θjc) (2.4)

2

Machine Learning Notes Ahmad Humayun

Since this model only requires O(CD) parameters, where C is the number of classes, and D is the number of
features, the classifier is relatively immune to overfitting. Hence, the posterior probability is just:

P(y = c|x, θ) ∝ P(y = c)

D∏
j=1

P(xj |y = c, θjc) (2.5)

(wikipedia http://en.wikipedia.org/wiki/Naive_Bayes_classifier) “In simple terms, a naive Bayes
classifier assumes that the presence or absence of a particular feature is unrelated to the presence or ab-
sence of any other feature, given the class variable. For example, a fruit may be considered to be an apple if it
is red, round, and about 3” in diameter. A naive Bayes classifier considers each of these features to contribute
independently to the probability that this fruit is an apple, regardless of the presence or absence of the other
features.”

3 Gaussian Models

• The Multi-variate Gaussian/Normal (MVN) is given by the exponent of the mahalanobis distance
between point x and µ:

N (x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
(3.1)

=
1

(2π)D/2|Σ|1/2
exp

[
−1

2

D∑
i=1

y2
i

λi

]
(3.2)

where yi ≡ uT
i (x−µ) where ui is the ith column of the orthonormal matrix U from the eigen-decomposition

Σ = UΛUT, and λi is the ith eigenvalue of Σ. µ decides the center of the ellipse, eigenvectors determines
the orientation of the ellipse, and the eigenvalues determine the elongation in each direction (MLPP 4.1.2).

• The MLE for estimating the parameter of an MVN is just the empirical mean and empirical variance (MLPP
4.1.3).

• It can be proved that the MVN is the distribution with the maximum entropy having specified the mean and
the variance (the first two moments). This is useful because usually given some data, the only thing that can
be reliably estimated are the first two moments. Everything else must be left as uncertain as possible when
creating the distribution - hence giving one reason for the wide use of MVN (MLPP 4.1.4).

• Gaussian discriminant analysis (GDA) is a generative classifier where class conditional densities are
defined by a MVN i.e. P(x|y = c,θ) = N (x|µc,Σc). When Σc is diagonal, it is a näıve Bayes classifier
(MLPP 4.2). Types of GDA:

– Quadratic discriminant analysis (QDA) is the simple GDA where the posterior is given by the
MVN class conditional likelihood and the prior is just a scalar weighting of each class (MLPP 4.2.1).

– Linear discriminant analysis (LDA) is an even simpler form of GDA where the class conditional
covariance is the same across all classes i.e. Σc ≡ Σ. If you do the math, xTΣ−1x can be factored
out from the posterior since its independent of c. This leaves us with a softmax function (a function
which at high values gives the most probable arg maxc class, and at low values samples classes uniformly:

S
(
λ , [λ1, . . . , λN]

)
c

= eλc∑N
i=1 e

λi
, If S(λ/T) then with higher values of T , the probability would be

more uniform). Essentially, we end up with linear decision boundaries between two classes (where the
decision boundary is defined by where the maximum posterior between classes switches from one class
to another) (MLPP 4.2.2).

3

http://en.wikipedia.org/wiki/Naive_Bayes_classifier

Ahmad Humayun Machine Learning Notes

– Two-class LDA is quite a simple model and P(y = 1|x,θ) boils down to a sigmoid function. Let’s
consider a point x0 which lies on the line between the two means µ0,µ1. If π0 = π1 i.e. the two priors
are equal, then x0 = 1

2 (µ0 + µ1). If π0 > π1 then x0 shifts more toward µ1, making the line segment
µ0,x0 larger. Another parameter w defines the steepness of the logisitic function and depends on how
separated the means relative to the variance: in other words w = Σ−1(µ1−µ0) is the line in the direction
µ0 to µ1. So the posterior is sigmoid sigm(wT(x− x0)) (MLPP 4.2.3).

– To make things even simpler, we can work with not only having the same covariance across all classes
Σc ≡ Σ, but also enforcing diagonal covariance. This simple model is called the Diagonal LDA which
is better suited for a high-dimensional setting (MLPP 4.2.7).

– One drawback of LDA is that it blindly considers all features regardless of their discriminability. Nearest
shrunken centroids classifier (MLPP 4.2.8) is one such fix where we first find the class-independent
mean for each feature mj and then see how much each class’s mean for that feature deviates from it, ∆cj .
If ∆cj = 0 for all c, that means the feature is uninformative. We can do this during MAP estimation
by encouraging zeros by increasing the regularization parameter λ for the prior - this essentially reduces
the number of features our model would consider for posterior estimation.

• Even though using MLE for GDA sounds attractive due its simplicity it might pose problems because the
full covariance matrix is singular if Nc < D i.e. the number of examples for a particular class is less than the
number of features. Even if Nc > D, Σ could be close to singular. Possible fixes at (MLPP 4.2.5).

• If x = (x1,x2) is jointly gaussian with parameters:

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, Λ = Σ−1 =

(
Λ11 Λ12

Λ21 Λ22

)
(3.3)

The marginals are simply:

P(x1) = N (x1|µ1,Σ11) (3.4)

P(x2) = N (x2|µ2,Σ22) (3.5)

and the conditionals are (MLPP 4.3.1):

P(x1|x2) = N (x1|µ1|2,Σ1|2) (3.6)

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2) (3.7)

= µ1 −Λ−1
11 Λ12(x2 − µ2) (3.8)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21 (3.9)

= Λ−1
11 (3.10)

• You can write the MVN in the canonical/natural parameters rather than the moment parameters (mean and
variance) (MLPP 4.3.3):

Λ ≡ Σ−1, ξ ≡ Σ−1µ (3.11)

We can convert back to moment parameters by:

µ = Λ−1ξ, Σ = Λ−1 (3.12)

The distribution can now be written as:

NN(x|ξ,Λ) = (2π)−D/2|Λ|1/2 exp

[
−1

2

(
xTΛx+ ξTΛ−1ξ − 2xTξ

)]
(3.13)

4

Machine Learning Notes Ahmad Humayun

Writing the conditional is easier in the canonical form:

P(x1|x2) = NN(x1|ξ1 −Λ12x2Λ11) (3.14)

Multiplying two Gaussians:

NN(ξf , λf)NN(ξg, λg) = NN(ξf + ξg, λf + λg) (3.15)

• If x ∈ RDx is a hidden variable and y ∈ RDy is a noisy observation of x. We can create a Linear Gaussian
System to relate them (MLPP 4.4):

P(x) = N (x|µx,Σx) (3.16)

P(y|x) = N (y|Ax + b,Σy) (3.17)

The posterior is given by:

P(x|y) = N (x|µx|y,Σx|y) (3.18)

Σ−1
x|y = Σ−1

x + ATΣ−1
y A (3.19)

µx|y = Σx|y
[
ATΣ−1

y (y − b) + Σ−1
x µx

]
(3.20)

• Inferring parameters µ and Σ for the MVN (MLPP 4.6).

4 Bayesian Statistics

• The use of priors and Bayes rule leads to Bayesian Statistics.

• We can easily compute a point estimate by looking at the posterior mean, median and mode (the MAP
estimate). We most often use mode/MAP because it boils to an optimization problem, and furthermore MAP
estimate can be seen in non-Bayesian terms by thinking of the log prior as a regularizer (MLPP Sect 5.2.1).

• Drawbacks of MAP (MLPP Sect 5.2.1): (1) gives no indication of uncertainty (like other point estimates);
(2) having no idea of uncertainty leads us to over-confidence in our predictions (note we are most interested
in predictive accuracy rather than parameter estimation for practical purposes); (3) the mode usually doesn’t
give a good idea of the distribution - because the largest peak can occur anywhere in an arbitrary distribution.
Mean and median take the volume of the distribution into consideration. The way to work around this is
to use a loss function. For instance a 0-1 loss function is L(θ, θ̂) = I(θ 6= θ̂), which means that you get no
partial credit for a wrong answer - hence this would return the optimal point estimate for the distribution.
Loss functions:

Loss method Function . . . returns

0-1 loss L(θ, θ̂) = I(θ 6= θ̂) Optimal estimate for posterior mode

Squared error loss L(θ, θ̂) = (θ − θ̂)2 posterior mean

Robust loss function L(θ, θ̂) = |θ − θ̂| posterior median

; (4) MAP estimate is not invariant to reparameterization: changing from one representation to another
equivalent representation doesn’t transform the mode where it should be in the new representation. The
MAP estimate depends on this parameterization. The MLE does not suffer from this since likelihood is a
function not a probability density. Bayesian inference also does not suffer from this problem since the change
of measure is taken into account while integrating over the parameter space.

5

Ahmad Humayun Machine Learning Notes

• Credible Intervals (MLPP Sect 5.2.2): To get a measure of confidence, credible intervals gives you a way to
give the width of the posterior distribution. This is a contiguous region which contains 1− α of the posterior
probability mass:

Cα(D) = (l, u) : P(l ≤ θ ≤ u|D) = 1− α (4.1)

where l, u are the bounds. Because there might be many such intervals, we select the one such that there
(1 − α)/2 mass in each tail; this is called the central interval. If we know the CDF F of the posterior,
l = F−1(α/2) and l = F−1(1 − α/2). If we don’t know F , we can draw samples from the posterior, and
then use monte carlo approximation to the posterior quantiles: we draw S samples and find the sample which
occurs at α/S over the sorted list. We will get the true quantile when S →∞.

• Highest posterior density regions (MLPP Sect 5.2.2.1): rather than finding a region which has some
amount of probability mass like in central interval, we might want to select all mass which is above a certain
probability. We do this in a way to get 1− α of the probability mass:

1− α =

∫
θ:P(θ,D)>p∗

P(θ,D)dθ (4.2)

where p∗ is the probability threshold. Hence we get:

Cα(D) = {θ : P(θ,D) > p∗} (4.3)

Note that for a multimodal distribution this might be multiple connected regions in the posterior density.

• At times we have multiple parameters, and we are interested in computing the posterior distribution of some
function of the parameters. For instance if there are two sellers on Amazon selling a thing for the same
price, but seller 1 has 90 positive reviews, and 10 negative ones; and seller 2 has 2 positive reviews and 0
negative ones. We can write the problem if θ1 and θ2 are unknown reliabilities of the sellers, we want to find
P(θ1 > θ2|D) ≡ P(δ = θ1 − θ2 > 0|D). We can solve this analytically, or by monte carlo sampling which is
easy because θ1 and θ2 are independent in the posterior.

• Model Selection (MLPP Sect 5.3): Another question in Bayesian statistics is selecting the right model
which does not overfit or underfit the data - finding the right answer is model selection. One way to do this
is to do cross-validation on each model m and pick the model with the least error. A more efficient approach
is to compute the posterior over the models:

P(m|D) =
P(D|m)P(m)∑
m∈M P(m,D)

(4.4)

and then select the MAP model m̂ = arg maxP(m|D), which is called the Bayesian model selection. If the
priors are uniform, it amounts to finding the modelm which maximizes the likelihood P(D|m) =

∫
P(D|θ)P(θ|m)dθ.

– Bayesian Occam’s Razor (MLPP Sect 5.3.1): one might think that selecting the model based on

P(D|m) would select a complex model (using a lot of parameters). This would be true if we use P(D|θ̂m)

to select models where θ̂m is the MLE or MAP estimate of parameters for model m, because models
with more parameters would ofcourse fit the data better and give a higher likelihood. Howerever since
P(D|m) is integrating out the parameters rather than maximizing them we are automatically protected
from overfitting - models with larger number of parameters not necessarily have a higher marginal
likelihood. This is Bayesian Occam’s Razor effect. Another way of seeing it is that

∑
D′ P(D′|m) = 1

so more complex models need to spread the probability mass more thinly over a larger area, whereas less
complex models cover lesser data space so they might miss the data collection instance you are working
with.

6

Machine Learning Notes Ahmad Humayun

– In Parameter inference:

P(θ|D,m) =
P(D|θ,m)P(θ|m)

P(D|m)
(4.5)

we didn’t have to worry about the evidence/marginal likelihood P(D|m) because that is constant w.r.t
θ. However when comparing models m, we need to compute the evidence (MLPP Sect 5.3.2). This
can be found if we know the normalization factors individually Z0, Z`, ZN i.e. the prior, likelihood, and
posterior respectively - then P(D) = ZN/(Z0Z`).

– The BIC approximation to log marginal likelihood takes the form where a penalty is applied according to
the complexity of the model (MLPP Sect 5.3.2.4). BIC is very closely related to minimum descriptor
length (MDL) which characterizes the score for a model in terms of how well it fits the data minus
how complex the model is. Also similar is the Akaike information criterion (AIC) which is derived
from the frequentist framework, and usually gives more complex models than BIC (because the penalize
complexity of the model with less intensity) - but it usually results in better predicitive accuracy.

– The effect of a prior might not be that significant for posterior inference (because with larger data
the likelihood overwhelms the prior), but in the case of computing the evidence/marginal likelihood,
it plays a much more significant role, since we are averaging the likelihood over all possible parameter
configurations, as weighted by the prior (MLPP 5.3.2.5). If the prior is of the form N (0, α−1I), so if α
is large, the effect of the prior is small hence we can use a complex model with many small parameters.
When the prior is unknown, the right Bayesian thing to do is to have a prior over a prior. It is alright
to give an uninformative hyper-prior - yet it is always better to go up in this prior to prior hierarchy.

– Suppose that we have choice of two models M0,M1. What model should we select. For this we define
the Bayes Factor, which is just the likelihood ratio except that we integrate out the parameters which
allows us to compare models of different complexity:

BF1,0 =
P(D,M1)P(M0)

P(D,M0)P(M1)
(4.6)

If BF1,0 > 1, then we prefer model 1. There is Jeffrey’s scale on BF1,0 which is the bayesian counterpart
to the frequentist p-value (MLPP 5.3.3).

– Improper Prior are ones which don’t sum to 1, which can be problematic for model selection/hypothesis
testing (MLPP 5.3.4). Plus, using proper, but very vague, priors can cause similar problems. In particular
Bayes factor will always favor a simpler model, since the probability of the observed data under a complex
model with a very diffuse prior will always be very small. This is called the Jeffreys-Lindley paradox.

• The most controversial aspect of Bayesian statistics is the reliance on priors. Bayesians argue this is un-
avoidable since all inference must be done conditional on certain assumptions about the world. But, you can
minimize the reliance on priors (MLPP sect 5.4):

– Uninformative Priors: which is “let the data speak for itself.”

– Jeffreys Priors: are more principled way of producing uninformative priors. The key observation is
that if P(φ) is non-informative then any re-parameterization of the prior such as θ = P(φ) for some
function h, should also be non-informative (MLPP sect 5.4.2). It is set as proportional to the square
root of the determinant of the Fisher information: Pθ(θ) ∝

√
|I(φ)|.

– Robust Priors (MLPP sect 5.4.3): Try not to be too confident on the prior by having heavy tails which
avoids forcing things toward the prior mean.

– Since robust priors can be expensive to compute, a good compromise is to use mixtures of conjugate
priors (MLPP sect 5.4.4). They can be used to approximate many kinds of priors.

7

Ahmad Humayun Machine Learning Notes

• Hierarchical Bayes if we want to compute the posterior P(θ|D) we need to know the prior P(θ|η). But if
we don’t know how to set the hyperparameters η, we need to have prior over priors. This is called hierarchical
bayes since there are multiple levels of unknown quantities (MLPP sect 5.5). For instance in a two level
model:

P(η,θ|D) ∝ P(D|θ)P(θ|η)P(η) (4.7)

• Empirical Bayes (MLPP sect 5.6): sometimes its better to marginalize out θ from Equation 4.7; which
would leave us with a simpler model of computing P(η|D). Rather than estimating the full distribution we
can just get a point estimate for η, which is typically smaller in dimensionality than θ, and hence is less
prone to overfitting, and we can safely use a uniform prior. Of course, empirical bayes violates the principle
that the prior should be chosen independent of the data. But one can view this as a cheap approximation
to inference in a hierarchical Bayesian model, just as MAP estimation is an approximation to inference
on one level model θ → D. In short, the more integrals one performs, the more Bayesian you become:
Method Definition

Maximum Likelihood θ̂ = arg maxθ P(D|θ)

MAP Estimation θ̂ = arg maxθ P(D|θ)P(θ|η)
Empirical Bayes (ML-II) η̂ = arg maxη

∫
P(D|θ)P(θ|η)dθ = arg maxη P(D|η)

MAP-II η̂ = arg maxη
∫
P(D|θ)P(θ|η)P(η)dθ = arg maxη P(D|η)P(η)

Hierarchical Bayes (Full Bayes) P(η,θ|D) ∝ P(D|θ)P(θ|η)P(η)

• Bayesian Decision Theory (MLPP sect 5.7): Nature produces a set of labels y ∈ Y and an observation
with each label x ∈ X , and we need to take an action a from the action space A. We incur a loss L(y, a),
which measures how compatible our action a was to the hidden state y. We gave some loss functions in this
table 4. Our goal would be to devise a decision procedure or policy, δ : X → A in a way that it minimizes
the expected loss:

δ(x) = arg min
a∈A

E[L(y, a)] (4.8)

Following this leads to rational behavior. By saying “expected” in the Bayesian sense we mean the expected
value of y given the data we have seen so far - this would be the posterior expected loss:

ρ(a|x) , EP(y|x)[L(y, a)] =

∫
y

L(y, a)P(y|x)dy (4.9)

where the Bayes Estimator/Bayes Decision Rule is given by:

δ(x) = arg min
a∈A

ρ(a|x) (4.10)

For instance, for the 0-1 loss function (MLPP sect 5.7.1.1) - where y is the true class label and one is penalized
when y 6= a, the posterior expected loss is ρ(a|x) = P(a 6= q|x) = 1− P(y|x), and hence the Bayes estimator
becomes the posterior mode: y∗(x) = arg maxy∈Y P(y|x).

• When the classifier is really unsure about its decision, it can refuse to classify that data point. This is a
Reject Option (MLPP sect 5.7.1.2). The loss function with reject action can be written as:

L(y = j, a = i) =


0 if i = j and i, j ∈ {1, . . . , C}
λr if i = C + 1 i.e. refuse to classify

λs classified incorrectly

(4.11)

We can show that the optimal action is to pick the reject action if the most probably class has a probability
below 1− λr

λs
, otherwise pick the most probable class.

8

Machine Learning Notes Ahmad Humayun

• Rather than having a 0-1 loss, we can have a different loss on false negative and false positives:

ŷ = 1 ŷ = 0
y = 1 0 LFN
y = 0 LFP 0

The posterior expected loss for the two possible actions is given by:

ρ(ŷ = 0|x) = LFN · P(y = 1|x) (4.12)

ρ(ŷ = 1|x) = LFP · P(y = 0|x) (4.13)

Ofcourse, we should pick ŷ = 1 iff ρ(ŷ = 0|x) > ρ(ŷ = 1|x) i.e. P(y = 1|x)/P(y = 0|x) > LFP /LFN .

• These quantities are important for ROC and PR curves:

True Positive Rate
/ Sensitivity / Recall

TPR = TP/(TP + FN) ≈ P(ŷ = 1|y = 1) Ratio of correctly classified y = 1

False Positive Rate
/ False Alarm Rate

FPR = FP/(FP + TN) ≈ P(ŷ = 1|y = 0) Ratio of incorrectly classified y = 0

Precision P = TP/(TP + FP) Ratio of correctly classified ŷ = 1 decisions

ROC is plot of TPR against FPR. Given a classifier δ(x) = I(f(x) > τ) i.e. the classifier will classify positive
ŷ = 1 if f(x) > τ . If we start from threshold τ of 1, there are no TP and FP (because the classifier never gives
ŷ = 1). Hence both TPR = FPR = 0. When we decrease the threshold, you can increase TPR and FPR,
because TP and FP increase by decreasing τ . Hence, the TPR and FPR functions parameterized by 1− τ are
both monotonically increasing functions. Since dTPR/dFPR > 0, the ROC curve is always monotonically
increasing. The area under curve (AUC) gives a single error metric from ROC curves. The other metric
is equal error rate (EER) which is the value where FPR = 1−TPR, in other words, it is the value on the
line going from (0,1) to (1,0). Lower the EER the better.

• PR curve is precision against recall. Precision measure what fraction of ŷ = 1 were correct classifications,
whereas recall measures what fraction of y = 1 were correctly classified. In other words, PR curves don’t care
about TN’s. For a single score we can use the mean precision (averaging over all recall values). Alternatively
we can give the precision for fixed recall value. The F score / F1 score is the harmonic mean of precision
recall:

F1 ,
2PR

R+ P
(4.14)

As stated before recall/TPR is 0 when τ = 1. On the other hand precision is usually undefined at τ = 1,
because there are usually no TP or FP. When decreasing τ , the curve is defined as soon as we make the
first classification ŷ = 1. Moreover, when τ = 0, the recall is usually 1 because FN=0. On the other hand
the precision at τ = 0 is usually non-zero because it is ≈ P(y = 1)/(P(y = 1) + P(y = 0)), whenever
FN = TN = 0 i.e. no ŷ = 0 classification is made. One important thing to note is that PR curve is not
a necessarily a monotonically decreasing function with decreasing τ . The reason being is that precision can
decrease or increase with increasing recall (decreasing τ). This happens whenever you add more TP without
adding any FP (more accurately α/A > β/B where α, β are the set of new/added TP and FP, whereas A,B
are the number of TP and FP respectively at higher τ).

5 Frequentist Statistics

• By trying to deal with parameters not like random variables (which Bayesians do) we come up with frequentist
statistics. Instead of being based on posterior distribution, they are based on sampling distribution. This
distribution is built by sampling multiple distributions from the true latent distribution. In Bayesian approach
there are no repeated trials.

9

Ahmad Humayun Machine Learning Notes

• (MLPP sect 6.2) A parameter is estimated by an estimator δ to some data D, so θ̂ = δ(D). The parameter is
viewed as fixed whereas the data is random, which is exact opposite of the Bayesian view. The uncertainty in
the parameter estimate can be measured by computing the sampling distribution of δ. The way it is done is

that lets say you have different datasets D(s) = {x(s)
i }Ni=1 for some true model P(·|θ∗), where N is the number

of samples in each dataset for s = [1, S]. If the estimate δ̂ gives some estimate of θ, then the distribution of

our estimate would be {θ̂(D(s))}. As we let S →∞, the distribution induced is the sampling distribution of
the estimator. Bootstrap sampling is one way to get this sampling distribution:

• Bootstrap (MLPP sect 6.2.1) is a simple Monte Carlo technique to approximate the sampling distribution.

For parametric bootstrap is to generate the samples using θ̂(D). An alternative, is the non-parametric
bootstrap, is to sample the xsi (with replacement) from the original data D, and then compute the induced
distribution as before.

• In frequentist decision theory (MLPP sect 6.3) there is a loss function and likelihood, but no posterior or
posterior expected loss. We are free to choose any estimator or decision procedure. Our expected loss or risk
is:

R(θ∗, δ) , EP(D̃|θ∗)

[
L(θ∗, δ(D̃))

]
=

∫
L(θ, δ(D̃))P(D̃|θ∗)dD̃ (5.1)

A basic problem with frequentist decision theory is that it relies on knowing the true distribution P(·|θ∗)
to evaluate risk. As compared to the Bayesian approach in Equation 4.9, which averages over θ (which is
unknown) and conditions on D (which is known), whereas the frequentist approach averages over D̃ (thus
ignoring the observed data), and conditions on θ (which is still unknown). Note that the risk cannot even be
computed because θ∗ is unknown - and consequently we cannot compare different estimators in terms of their
frequentist risk. Following are some solutions:

– We need to convert R(θ∗, δ) into a single measure of quality R(δ), hence dropping the reliance on θ∗.
One approach is to put a prior on θ∗ and then define Bayes risk of an estimator as:

RB(δ) , EP(θ∗)[R(θ∗, δ)] =

∫
R(θ∗, δ)P(θ∗)dθ∗ (5.2)

and now like in the Bayesian case, we get the Bayes estimator which minimizes the expected risk:
δB , arg minδ RB(δ). A Bayes estimator can be obtained by minimizing the posterior expected loss for
each x. (see MLPP Theorem 6.3.1). This shows that by picking the optimal action on a case-by-case
basis (as in the Bayesian approach) is optimal on average (as in the frequentist approach).

– (MLPP sect 6.3.2) Rather than having to define a prior for the estimator, an alternative approach is
to define maximum risk of an estimator: Rmax(δ) , maxθ∗ R(θ∗, δ). minmax rule is one which
minimizes the maximum risk:

δMM , arg min
δ

Rmax(δ) (5.3)

i.e. which decision procedure has the lowest worst case risk. Minmax estimators are overly conservative.

– Even though frequentist decision theory relies on knowing the true distribution P(·|θ∗) in order to evaluate
risk, some estimators might be worse than others regardless of the value of θ∗ i.e. ifR(θ, δ1) ≤ R(θ, δ2) : ∀θ ∈ Θ,
then we can say δ1 dominates δ2. An estimator is admissible if it is not strictly dominated by any other
estimator (MLPP sect 6.3.3).

– The James-Stein estimator is a biased shrinkage estimator of the mean of Gaussian random vectors:
θ̂i = Bx̄+ (1−B)xi where 0 < B < 1 is a tuning constant. It can be shown that the shrinkage estimator
has lower frequentist risk than the MLE (sample mean) for N ≥ 4. This is called the Stein’s paradox
(MLPP sect 6.3.3.2).

10

Machine Learning Notes Ahmad Humayun

• An estimator is considered consistent if it can eventually recover the parameters from the data i.e. s→∞ : θ̂(D)→ θ∗.

• The bias of an estimator is:

bias(θ̂(·)) = EP(D|θ∗)

[
θ̂(D)− θ∗

]
(5.4)

The MLE for a Gaussian variance, σ̂2 is not an unbiased estimator of σ2. Let’s say you are trying to compute

the variance σ2 from the whole population i.e our θ∗ : σ2 =
∑N
i=1(xi−µ)2

N . When you sample and try to estimate

the statistic of the variance s2 =
∑n
i=1(xi−x̄)2

n , we can provably get a smaller estimate of the variance which is
biased. To get an unbiased estimate you need the denominator to be n− 1 (to make the statistic larger).

• Cramer-Rao lower bound provides a lower bound on the variance of any unbiased estimator (MLPP sect
6.4.3). This is important to see because just seeing that the estimator is unbiased is not enough - we also
need to see its variance.

• Bias-variance tradeoff (MLPP sect 6.4.4) We can prove that the expected value of the variance of the
estimated parameter is given by (supposed we use quadratic loss):

E
[
(θ̂ − θ∗)2

]
= var

[
θ̂
]

+ bias2(θ̂) (5.5)

MSE = variance + bias2 (5.6)

(θ̂ is the estimate, θ∗ is the true value) This means that it might be useful to use an biased estimator as long
as it reduces our variance, considering our goal is to minimize squared loss. (see MLPP Figure 6.5)

• (MLPP sect 6.4.4.3) It can be shown for 0-1 loss instead of squared error that risk is no longer experssible
as squared bias plus variance. So for classification, the bias variance tradeoff works a such: if you are
on the right side of the decision boundary then the bias is negative and decreasing the variance will decrease
the misclassification rate. But, if your estimate is on the wrong side of the decision boundary, then the bias
is positive, and it pays to have a larger variance.

• Empirical Risk Minimization (MLPP sect 6.5): To overcome the problem of not being able to compute
the risk function (since we don’t know the true distribution), we can look at a loss function of the form
L(y, δ(x)), where y is true but unknown response and δ(x) is our prediction given the input x. In this case
the frequentist risk is:

R(p∗, δ) , E(x,y)∼p∗ [L(y, δ(x))] =
∑
x

∑
y

L(y, δ(x))p∗(x, y) (5.7)

where p∗ is the nature’s distribution, which can be empirically estimated pemp(x, y|D) , 1
N

∑N
i=1 δxi(x)δyi(y),

which makes the empirical risk as follows:

Remp(D, δ) , R(pemp(·|D), δ) =
1

N

N∑
i=1

L(yi, δ(xi)) (5.8)

In the case of 0-1 loss L(y, δ(x)) = I(y 6= δ(x)), this becomes the misclassification rate. In the case of
squared error loss, L(y, δ(x)) = (y − δ(x))2 this becomes mean squared error.

• Usually minimizing the empirical risk will result in overfitting. It is therefore necessary to add complexity
penalty to the objective function (in comparison to Equation 5.8):

R′(D, δ) = Remp(D, δ) + λC(δ) (5.9)

where C(δ) is a measure of complexity of the prediction function and λ controls the strength of the complexity
penalty. This is called Regularized risk minimization (MLPP 6.5.1). We can now pick an estimator by

δ̂λ = arg minδ [R′(D, δ)], where following the structural risk minimization principle λ̂ = arg minλ R̂(δ̂λ),
where R̂(δ) is an estimate of risk.

11

Ahmad Humayun Machine Learning Notes

– We can estimate the risk of an estimator by using a validation set (or cross validation - use stratified
CV to approximately equal the proportion of labels in each fold). The risk when doing CV is this:

R(m,D,K) =
1

N

K∑
k=1

∑
i ∈ DkL(yi, f

k
m(xi)) (5.10)

where m is a discrete index such as the degree of a polynomial, or a continuous index such as the strength
of a regularizer. K is the number of folds, Dk is the set of points in fold k, and fkm(x) is the function
that was trained on all the data except the test data for fold k.

– Leave one out cross validation (LOOCV) is one where the model is trained and tested N times by
leaving a sample out each time. When we analytically remove the effect of the ith training sample, it is
called generalized cross validation.

– The standard frequentist measure of uncertainty of an estimate is the standard error of the mean:

se =
σ̂√
N

=

√
σ̂2

N
, σ̂2 =

1

N

N∑
i=1

(Li − L̄)2, Li = L(yi, f
k(i)
m (xi)), L̄ =

1

N

N∑
i=1

Li (5.11)

Note that σ measures the intrinsic variability of Li across samples, whereas se measures our uncertainty
about the mean L̄ (MLPP sect 6.5.3.2).

– A common heuristic for picking a model from these noisy estimates is to pick the value which corresponds
to the simplest model whose risk is no more than one standard error above the risk of the best model;
this is called the one-standard error rule.

– (MLPP sect 6.5.4) Since CV is slow, there is motivation to find analytical approximations or bounds to
the generalization error. Statistical Learning Theory (SLT) tries to bound the risk R(p∗, h) for any
data distribution p∗ and hypothesis h ∈ H in terms of the empirical risk Remp(D, h), the sample size
N = |D|, and the size of the hypothesis space H. The bound you can derive tells us that the optimism of
the training error (i.e. risk always seems low when the model is viewed from the training set) increases
dim(H) but decreases with N = |D|, as is expected. If the hypothesis spaceH is infinite (e.g. we have real
valued parameters) we cannot use dim(H) = |H|, and instead we need to use Vapnik-Chervonenkis
or VC dimension of the hypothesis class.

– Log loss: Lnll(y, η) = − logP(y|x,w) = log(1 + e−yη).

• In Bayesian statistics, we condition on what is known namely the observed data, D and average over what
is not known, namely the parameter θ. In frequentist statistics, we do exactly the opposite: we condition on
what is unknown namely the true parameter value θ and average over hypothetical future data sets D̃.

• p-value (MLPP sect 6.6.2)

• (MLPP sect 6.6.3) The fundamental reason for many of frequentist pathologies is that frequentist inference
violates the likelihood principle, which says that inference should be based on the likelihood of the observed
data, not based on hypothetical future data that you have not observed. The main arguments for it are the
sufficiency principle (all data to estimate an unknown parameter is in the sufficient statistic), and weak
conditionality (which says inference should be based on information that has happened not on what might
happen).

6 Linear Regression

• It is used to fit models in supervised machine learning. When augmented with kernels or other basis functions,
it can even model non-linear relationships.

12

Machine Learning Notes Ahmad Humayun

• (MLPP sect 7.2) Linear regression model is of this form:

P(y|x,θ) = N (y|wTx, σ2) (6.1)

For non-linear relationships, we can do basis function expansion by putting a non-linear function over x,
φ(x):

P(y|x,θ) = N (y|wTφ(x), σ2) (6.2)

Note that even now the model is linear in the parameters w, hence it is still linear regression. If x was just
a scalar, you could use a polynomial basis function φ(x) = [1, x, x2, . . . , xd]. Increasing d would increase the
complexity of the model. The expectation of the linear model can be written as:

E(y|x) = w0 + w1x1 + w2x2 + ...+ wnxn = wTx (6.3)

where the first value of x vector is always 1, and w0 is called the intercept. You can make this model arbitrarily
complex as long as it is linear in the parameter space, for instance:

E(y|x) = w0 + w1x1 + w2x2 + w3x1x2 + w4x
2
1 + w5x

2
2 (6.4)

• (MLPP sect 7.3) You can compute the maximum likelihood estimate or what is called the least squares
solution: θ̂ = arg maxθ logP(D|θ). If the training examples are independent and identically distributed

(iid), then we can write the log likelihood as `(θ) , P(D|θ) =
∑N
i=1 logP(y(i)|x(i),θ). Instead of maximizing

the log likelihood, we can minimize the negative log likelihood (NLL). It turns out the MLE minimizes the
residual sum of squares / sum of square errors:

RSS(w) ,
N∑
i=1

(y(i) −wTx(i))2 = ‖ε‖22 (6.5)

(RSS/N is called the mean squared error (MSE)). Note the negative log likelihood is convex with a unique
minimum. Importantly, this is true even if we use basis function expansion, such as polynomials, because the
negative log likelihood is still linear in the parameters w, even if it is not linear in the inputs x. The derivation
of the MLE leads to the normal equation - where the solution ŵ to this linear system of equations is called
the ordinary least squares (OLS):

ŵOLS = (XTX)−1XTy (6.6)

where the design matrix X which contains all the training data, where each row is a training sample, and

each column is a feature. Note, the first column in X will be all 1s since x
(i)
0 = 1. We will also have a vector

y containing the output values for each training sample.

• For a geometrical interpretation of linear regression see MLPP sect 7.3.2.

• (MLPP sect 7.3.3) For a scalar parameter function a convex function is one where d2

dθ2 f(θ) > 0. For multi-
variate linear regression, a twice continuously differentiable function is convex iff its Hessian is positive definite

for all θ (where Hessian is the matrix of second partial derivatives, defined by Hjk = ∂f2(θ)
∂θj∂θk

)

• If there are outliers in the data, linear regression with `2 squared loss will be severely affected. This is
because squared loss penalizes deviations quadratically, so points far away from the fit have more effect
than the ones near. To do robust linear regression (MLPP sect 7.3.2) you can replace the Gaussian
distribution for the response variable with a distribution with heavy tails - such a distribution will assign
higher likelihood to outliers without having to perturb the model. One possibility is laplace distribution:
P(y|x,w, b) ∝ exp

(
− 1
b |y −wTx|

)
. Another is a huber loss function which is quadratic before the loss is δ,

and become like `1 after that:

LH(r, δ) =

{
r/2 if |r| ≤ δ
δ|r| − δ2/2 if |r| > δ

(6.7)

13

Ahmad Humayun Machine Learning Notes

• Ridge Regression (MLPP sect 7.5): To avoid overfitting, we can use a gaussian prior with a gaussian
likelihood (you can use a robust function for the likelihood as discussed before).

arg max
w

N∑
i=1

logN (y(i)|w0 + wTx(i), σ2) +

D∑
j=1

logN (wj |0, τ2) (6.8)

the second part is the zero mean Gaussian prior where 1/τ2 controls the strength. Note, now we have separated
out the intercept because we don’t want to regularize it. This is equivalent to minimizing the cost function:

J(w) =
1

N

N∑
i=1

(y(i) − (w0 + wTx(i)))2 + λ‖w‖22 (6.9)

where λ , σ2/τ2. Note, that the first term is still the MSE/NLL and the second term is the complexity
penalty. The corresponding normal equation solution is:

ŵridge =
(
λID + XTX

)−1
XTy (6.10)

This is called ridge regression or penalized least squares. This method encourages the parameters to be
small (by `2 regularization / weight decay).

• For performing numerically stable linear regression normal equation see MLPP sect 7.5.2.

• For connection between PCA and linear regression see MLPP sect 7.5.3. In short the directions in which we
are most uncertain about w are determined by the eigenvectors of the matrix X with the smallest eigenvalues.
Hence small singular values σj (where σ2

j are eigenvalues of XTX) correspond to directions with high posterior
variance. These are the directions which the ridge shrinks the most.

• (MLPP sect 7.5.4) When you are modeling i.e. training a system from training data, the model eventually has
three kinds of errors (1) noise floor which is an irreducible component that all models incur due to the intrinsic
variability of the generating process; (2) structural error is the discrepancy between the generating process
and the model; (3) approximation error is the discrepancy between the parameters that are estimated and
the best parameters that can be estimated for a given model. If your model has enough degrees of freedom,
and the size of the training data was just enough, you would create a model which has no structural error i.e.
it will hit the noise floor. Typically this would happen much quicker (as a function of the amount of training
data) for simpler models. Same is true for approximation error.

• Bayesian Linear Regression (MLPP sect 7.6) So ridge or OLS regression gives us a point estimate of our
parameters - but if we wanted to compute the full posterior over w and σ2 you need a bayesian approach. So
this will allow us a full posterior from which we can not only know the MAP solution (which is the mean/mode
of the gaussian) but we will also be able to sample models from this distribution.

7 Logistic Regression

• Logistic Regression is a machine learning method for classification. There are both binary classification
problems and multi-class classification problems. Linear regression can be adjusted to perform binary
classification - where we would fit a line to our labels y ∈ {0, 1} given x. This x∗ will give a threshold for
giving labels to our testing data.

• One way to build a probabilistic classifier is to create a joint model of the form P(y,x) and then to condition
on x, thereby deriving P(y|x). This is called the generative approach. An alternative approach is to fit a
model of the form P(y|x) directly. This is called the discriminative approach. (MLPP sect 8.1)

14

Machine Learning Notes Ahmad Humayun

• (MLPP sect 8.2) Logistic regression is a discriminative approach to classification, which is linear in its pa-
rameters. It is modeled as:

P(y|x,w) = Ber(y|sigm(wTx)), sigm(wTx) =
1

1 + exp(−wTx)
(7.1)

The latter is called the sigmoid function / logistic function. If we threshold the probability at 0.5, we
induce a linear decision boundary whose normal is given by w. In other words we say that y = 1 when
wTx ≥ 0 (this is what defines the decision boundary/plane). If we suppose y(i) ∈ {−1,+1}, the negative log
likelihood is:

`-(w) =

N∑
i=1

log
(

1 + exp(−y(i)wTx(i))
)

(7.2)

Where `-(·) is the symbol for the negative log likelihood (NLL). In a more typical case y(i) ∈ {0, 1}, we can
write the cost function as:

`-(w) = − 1

N

N∑
i=1

y(i) log
(

sigm(wTx(i))
)

+
(

1− y(i)
)

log
(

1− sigm(wTx(i))
)

(7.3)

Let’s take a look at this negative log likelihood cost function more carefully. If y(i) = 0 you would want to get
wTx(i) ≤ 0, or pay a penalty otherwise. If wTx(i) � 0, then sigm(wTx(i)) = 1, hence setting the second part
of the equation to 0. Hence, for this point the cost function would be 0. On the other hand if the function
was doing the right thing i.e. wTx(i) � 0, then sigm(wTx(i)) = 0, and this would reduce the cost function
by 1

N (i.e. added − 1
N). Therefore, the more correct decisions our parameter makes, the more negative NLL

would be. Hence, minimizing this function would be the right thing to do. Since there is no closed form for
this equation, you need to do gradient descent to reach the minima:

w(m+1) := w(m) − η∇`-(w(m)), ∇`-(w) =


∂
∂w1

`-(w)
...

∂
∂wK

`-(w)

 (7.4)

Here, η is called the learning rate, whose setting is critical to the algorithm. If its set low, it can have very slow
convergence, whereas setting it too high would have a ping ping effect where there is a chance of overshooting
the target. We can show that the derivative would be of this form:

∂

∂wj
`-(w) =

1

N

N∑
i=1

(
sigm(wTx(i))− y(i)

)
x

(i)
j (7.5)

Which can be turned into:

∇`-(w) =
1

N
XT

 sigm(wTx(1))− y(1)

...
sigm(wTx(N))− y(N)

 (7.6)

• (MLPP sect 8.3.2) One problem with this algorithm is that how to set the learning rate η. One way to do this
is to travel in the direction of the gradient till the gradient becomes 0 - this would ensure we have reached
the minimum in that direction. From that point we would need to find the gradient again (which would be
orthogonal to the previous direction - hence exhibiting zig-zag behavior), and then travel in that direction.
This essentially gives a way to set η in each iteration. This algorithm is called Steepest descent, where the
learning rate is set by:

η(m) = arg min
η≥0

`- (w − η∇`-(w)) = arg min
η≥0

φm(η) (7.7)

15

Ahmad Humayun Machine Learning Notes

This is called line minimization or line search. You can also add a momentum term sigm((w(m)−w(m−1))Tx)
to reduce the zig-zag effect.

• Newton’s Method is a method to do the same optimization which takes the curvature of the space (i.e. the
Hessian) into account.

Algorithm 1: Newton’s method

1 Initialize w(0)

2 for m = 0, 1, . . . until convergence do
3 Evaluate ∇`-(w(m−1))

4 Evaluate hessian H`(w
(m)) = ∇2`-(w

(m)) where H`(w) =


∂2

∂w2
1
`-(w) · · · ∂2

∂w1wK
`-(w)

...
. . .

...
∂2

∂w1wK
`-(w) · · · ∂2

∂w2
K
`-(w)


5 Compute dφm(η)

dη = 0 to find η(m), where φm(η) = `-
(
w(m) − ηH`(w

(m))−1∇`-(w(m))
)

6 w(m+1) := w(m) − η(m)H`(w
(m))−1∇`-(w(m))

Note step 5 where you want to compute the roots of an arbitrary equation can be done by Newton-Rhapson

method, where θ(m+1) = θ(m) − f(θ(m))
f ′(θ(m))

is computed until convergence. The newton’s method works if

H`(w
(m)) is strictly positive definite. We can use the Levenberg-Marquardt modification which aims to

keep the hessian positive definite. This becomes essentially a compromise between Newton’s method and
steepest descent. Iteratively reweighted least squares (IRLS) which is very similar is explained in
MLPP sect 8.3.4.

• Since it might be expensive to compute the Hessian, Quasi-Newton methods try to iteratively approximate
the Hessian using information gleaned from the gradient vector at each step. One of them is BFGS which can
be thought of as a diagonal plus low rank approximation to the hessian.

• Just like in ridge regression, we can use `2 regularization, where the new functions are of the form:

`R- (w) = `R- (w) + λwTw (7.8)

∇`R- (w) = ∇`-(w) + λw (7.9)

HR
` (w) = H`(w) + λI (7.10)

• For multi-class classification, you can use multinomial logit regression which has the following form (MLPP
sect 8.3.7):

P(y = c|x,W) =
exp(wT

c x)∑C
c′=1 exp(wT

c′x)
(7.11)

The NLL is, given yic = I(yi = c):

`-(W) = −
N∑
i=1

[(
C∑
c=1

yicw
T
c xi

)
− log

(
C∑
c′=1

exp(wT
c′xi

)]
(7.12)

• Bayesian Logistic Regression (MLPP sect 8.4): We cannot compute the full posterior exactly because
there is no appropriate conjugate prior.

• Laplace approximation (MLPP sect 8.4.1) where we use an approximation to the marginal likelihood with
the help of taylor expansion. This is also called Gaussian approximation because the posterior becomes
Gaussian like as the sample size increases.

16

Machine Learning Notes Ahmad Humayun

• If the data is linearly separable, then there might be many parameter settings that correspond to the lines
that separate the training data. Hence, the MLE is not well defined in such a case. Since large regression
weights make the sigmoid very steep, turning it into a step function.

• The Posterior Predictive (MLPP 8.4.4) where we predict the class given the data:

P(y|x,D) =

∫
P(y|x,w)P(w|D)dw (7.13)

Since this is untractable, the simplest approximation in the binary case is (where E[w] is the posterior mean):

P(y = 1|w,D) ≈ P(y = 1|x,E[w]) (7.14)

A better approximation is Monte carlo approximation:

P(y = 1|w,D) ≈ 1

S

S∑
i=1

sigm((ws)Tw) (7.15)

where ws ∼ P(w|D) are just samples from the distribution. Even though the decision boundary is linear, the
posterior predictive density is not linear. By averaging over multiple predictions, we see that the uncertainty
in the decision boundary “splays out” as we move further from the training data. Note also that the posterior
mean decision boundary is roughly equally far from both classes.

• Online Learning (MLPP 8.5): Suppose that at each step, “nature” presents a sample zk and the “learner”
must respond with a parameter estimate θk. The objective is to reduce regret, which is averaged loss incurred
relative to the best we could have gotten in hindsight:

regretk ,
1

k

k∑
t=1

f(θt, zt)− min
θ∗∈Θ

1

k

k∑
t=1

f(θ∗, zt) (7.16)

One simple way to do is online gradient descenet: θk+1 = projΘ (θk − ηk∇f(θk, zk)) where ηk is the step size.
Rather than minimizing regret, we can also minimize expected loss f(θ) = E [f(θ, z] where the expectation is
taken over future data. Since some variables in the objective are random, this is called stochastic optimiza-
tion. One way is to compute θk+1 at each step - this is called Stochastic Gradient Descent (SGD). The
learning rate can be ηk = 1/k; or ηk = (τ0 + k)−κ where τ0 ≥ 0 slows down early iterations of the algorithm
and κ ∈ (0.5, 1] controls the rate of forgetting old values.

• One disadvantage of SGD is that it uses the same step size for all parameter values. An alternative approach
is adagrad (adaptive gradient) which is similar in spirit as a diagonal Hessian approximation. In particular,
if θi(k) is parameter i at time k, and gi(k) is its gradient, then we can update as follows:

θi(k + 1) := θi(k)− η gi(k)

τ0 +
√
si(k)

, si(k) := si(k − 1) + gi(k)2 (7.17)

This results in a per-parameter step-size which adapts to the curvature of the loss function.

• If we dont have an infinite data stream, we can simulate one by sampling data points at random from our

17

Ahmad Humayun Machine Learning Notes

training set:

Algorithm 2: Stochastic gradient descent

1 Initialize θ, η
2 repeat
3 Randomly permute data
4 for i = 1 : N do
5 g = ∇f(θ, zi)
6 θ ← projΘ(θ − ηg)
7 Update η

8 until converged

In addition to enhanced speed, SGD is often less prone to getting stuck in shallow local minima, because it
adds a certain amount of “noise”, and spends more cycles searching through the parameter space, rather than
exhaustively computing the gradient of the loss function.

• Least Mean Squares (LMS) algorithm is a way to do online linear regression. Here the online gradient is
gk = xk(θTkxk−yk). After computing the gradient, we take a step in the direction θk+1 = θk−ηk(ŷk−yk)xk,
where yk is true response, and ŷk = θTkxk. Note that LMS may require multiple passes through the data to
find the optimum. By contrast, the recursive least squares algorithm, which is based on the Kalman filter and
which uses second-order information, finds the optimum in a single pass

• Perceptron Algorithm (MLPP sect 8.5.4) is online logistic regression. The batch gradient was given in
Equation 7.5. In the online case, the weight update is:

θk = θk−1 − ηkgi, gi , (µi − yi)xi (7.18)

where µi = P(yi = 1|xi,θk) = E[yi|xi,θk]. This is exactly the same form as LMS. Now if we consider the case
where ŷi = arg maxy∈{0,1} P(y|xi,θ) which represents the most probable class. If we consider y = {−1,+1}
rather than y = {0,+1}, then ŷiyi = −1 would be an error and ŷiyi = +1 would be a correct estimate. Hence,
we can set ŷi = sign(θTxi). At each step, we update the weight vector by adding on the gradient. The key
observation is that, if we predicted correctly, then ŷi = yi , so the (approximate) gradient is zero and we do
not change the weight vector. The perceptron algorithm would converge if the data is linearly separable.

• The Bayesian way to do online learning would be:

P(θ|D1:k) = P(Dk|θ)P(θ|D1:k−1) (7.19)

This has the obvious advantage of returning a posterior instead of just a point estimate. It also allows for the
online adaptation of hyper-parameters, which is important since cross-validation cannot be used in an online
setting. Finally, it has the (less obvious) advantage that it can be quicker than SGD (because effectively we
associate a different learning rate to each parameter).

• Generative vs Discriminative (MLPP 8.6.1) (also see properties of different methods in Table 8.1):

– Usually the assumptions in discriminative models are stronger than generative models.

– In training discriminative models we usually maximize the conditional log likelihood, whereas in gener-
ative we maximize the joint log likelihood.

– Since the discriminative models do not need to model the distribution of features, discriminative models
might require less data if the model is correct.

– Usually building generative models is easy. Plus since we estimate parameters for each class indepen-
dently, adding classes doesn’t require re-training - which is not the case in discriminative.

18

Machine Learning Notes Ahmad Humayun

– Dealing with missing data in generative classifiers is much easier. We can model the reason for missing
data which can help in inference (MLPP 8.6.2). There is also the case of missing-ness in training data
and testing data. The former is harder to deal than latter. When the class label is sometimes missing
during training time, it is called semi-supervised learning. If some feature is missing during test time,
we can marginalize it out (MLPP 8.6.2.1). For instance näıve Bayes classifier which deals with features
independetly, we can skip missing features by just not multiplying/ignoring it.

– Semi-supervised learning is much easier with generative classifiers.

– Generative classifier model the joint, and hence treat the input x and output y symmetrically. So given
one, you can always infer the other.

– It is much easier to deal with preprocessing (like using a basis function ψ(x), rather than x) in dis-
criminative models. It is hard in generative models because then the features are correlated in complex
ways.

– Some generative models make strong independence assumptions (like näıve Bayes) which might not be
true. This results in extreme posterior class probabilities (very near 0 or 1).

• Fisher Linear Discriminant Analysis (FLDA) (MLPP 8.6.3): Since discriminant (generative model for
classification) analysis requires fitting a MVN to the features, it can be problematic in high dimensions. One
approach would be to reduce the dimensions to z ∈ RL and then fit an MVN over it. You can always construct
a W ∈ RL×D through PCA such that z = Wx. Since, PCA is an unsupervised approach (i.e. it is agnostic
to class labels), the low dimensional z might not result in good separability. To deal with this we have FLDA
in which W has the assumption that the low-dimensional data can be classified as well as possible using a
Gaussian class-conditional density model. The drawback of this technique is that it is restricted L ≤ C − 1,
regardless of D. For a two class case, the idea behind FLDA would be to find a line to project the data on
such that the distance between the means mk is maximized, while the ensuring the projected clusters are
tight i.e. the variance sk is small:

J(w) =
(m2 −m1)2

s2
1 + s2

2

=
wTSBw

wTSWw
(7.20)

where SB is the inter-class scatter matrix, and SW is the intra-class scatter matrix.

8 Generalized Linear Models and the Exponential Family

• Exponential family (MLPP 9.1) is a group of distributions. Any member if this family can be used as
class-conditional density in order to make a generative classifier. It can also be used as a response variable in
discriminative models, where the mean is a linear function of the inputs (Generalized Linear Model).

• Why the exponential family (MLPP 9.2)? Under certain regularity conditions it can be shown that the
exponential family has finite-sized sufficient statistics (Pitman-Koopman-Darmois theorem). It is also
the only family for which conjugate priors exist. It can also be shown that it makes the least set of assumptions
given user constraints.

• (MLPP 9.2.1) The exponential family has a pdf or pmf P(x|θ) where x ∈ Xm and θ ∈ Θ ⊂ Rd:

P(x|θ) =
1

Z(θ)
h(x) exp

[
θTφ(x)

]
(8.1)

= h(x) exp
[
θTφ(x)−A(θ)

]
(8.2)

where

Z(θ) =

∫
Xm

h(x) exp
[
θTφ(x)

]
dx (8.3)

A(θ) = logZ(θ) (8.4)

19

Ahmad Humayun Machine Learning Notes

Symbol Meaning

θ natural parameters / canonical parameters
φ(x) ∈ Rd vector of sufficient statistics. If φ(x) = x then its a natural exponential family
Z(θ) partition function
A(θ) log partition function / cumulant function
h(x) scaling constant, often equal to 1

In Equation 8.1, θ can be replaced with η(θ) , η, i.e. η(·) maps parameters to canonical parameters η. If
dim(θ) < dim(η) it is called the curved exponential family, which means we have more sufficient statistics
than parameters. If η(θ) = θ, the model is said to be in canonical form.

• For examples on how bernoulli, multinoulli, univariate gaussian are from the exponential family (MLPP 9.2.2).

• (MLPP 9.2.3) The log partition function A(θ) is important because its derivatives can be used to generate
cumulants of the sufficient statistics. The cumulants of a random variable are defined by the logarithm of
the moment-generating function. For a single parameter case:

dA(θ)

dθ
= E [φ(x)] ,

d2A(θ)

dθ2
= E

[
φ2(x)

]
− E [φ(x)]

2
= var [φ(x)] (8.5)

For the multivariate case, ∇2A(θ) = cov [φ(x)]. Since the covariance is positive definite, we see that A(θ) is
a convex function.

• (MLPP 9.2.4) The likelihood of an exponential family model has the form:

P(D|θ) =

[
N∏
i=1

h(x(i))

]
g(θ)N exp

(
η(θ)T

[
N∑
i=1

φ(x(i))

])
(8.6)

And the sufficient statistics are N and:

θ(D) =

[
N∑
i=1

φ1(x(i)), . . . ,

N∑
i=1

φK(x(i))

]
(8.7)

For instance, the univariate Gaussian has the sufficient statistics θ(D) =
[∑

i x
(i),
∑
i x

(i)2
]

and N . One of

the conditions on the exponential family is that support of the distribution is not dependent on the parameter.
For instance, the uniform distribution is not exponential family because its support set, X , depends on the
parameters.

• The MLE, the empirical average of the sufficient statistics must equal the model’s theoretical expected suffi-
cient statistics, i.e., θ̂ must satisfy:

E [φ(X)] =
1

N

N∑
i=1

φ(x(i)) (8.8)

• If the prior is conjugate to the likelihood, it means that the prior P(θ|τ) has the same form as the likelihood
P(D|θ). For this to make sense, we require that the likelihood have finite sufficient statistics, so that we can
write P(D|θ) = P(s(D)|θ).

• See the form of the likelihood, prior, posterior, and posterior predictive in (MLPP 9.2.5).

• The principle of maximum entropy (MLPP 9.2.6) says we should pick the distribution with maximum entropy
(i.e. as close to uniform as possible), subject to the constraints that the moments of the distribution match
the empirical moments of the specified functions. This would result in an exponential distribution - showing
that this is the family of distributions which makes the least number of assumptions.

20

Machine Learning Notes Ahmad Humayun

• Linear and logistic regression are examples of Generalized Linear Models (GLMs) (MLPP 9.3). These
are models in which the output density is in the exponential family, and in which the mean parameters are a
linear combination of the inputs, passed through a possibly nonlinear function, such as the logistic function.

• Logistic regression is done with a model of the form P(y = 1|xi,w) = sigm(wTxi). In general any function
g−1 (P(y = 1|xi,w) = g−1(wTxi)) that maps [−∞,∞] to [0, 1] is valid for regression. In Probit Regression
(MLPP 9.4), g−1(η) = Φ(η), where Φ(η) is the cdf of the standard normal. This function is very similar to
the logistic (sigmoid) function. One advantage of probit regression is that it can be used for classification
where the labels are ordinal (ranked) - this is called ordinal regression.

• At times we want to fit many related classification or regression models. It is often reasonable to assume that
the input-output mapping is similar across these different models, so it might give better performance by fitting
all the parameters at the same time. This is called multi-task learning, transfer learning, or learning to
learn. Given different J groups, each with N items, we have (x1,1, y1,1), . . . , (xN1,1, yN1,1), . . . , (xNJ ,J , yNj ,J).
The goal is to fit models P(yj |xj) for all j i.e. groups. Even though we want to fit individual models
across different groups, there might not be enough data to fit on a group. As a compromise we fit a model
on each group, but encourage the model parameters to be similar across groups. More precisely, suppose
E[yij |xij] = g(xT

ijβj), where g is the link function for the GLM. Furthermore, suppose βj ∼ N (β∗, σ
2
j I), and

β∗ ∼ N (µ, σ2
∗I). Note, σ2

j controls how much group j depends on common parents, and σ2
∗ controls the

strength of the overall prior. Here, the model with smaller samples borrows statistical strength from larger
samples because βjs are linked through β∗. You can create a log probability to optimize the parameters using
(MLPP Eq 9.110). This is called Hierarchical Bayes for Multi-task Learning.

• Suppose we generalize the multi-task learning scenario to allow the response to include information at the
group level, xj , as well as at the item level, xij . Similarly, we can allow the parameters to vary across
groups, βj , or to be tied across groups, α. For instance suppose yij be amount of cholesterol for person j at
measurement i. Let xij be the age of the person, and xj be the ethnicity. The primary goal is to determine if
there are significant differences in the mean cholesterol among different ethnicities, after accounting for age.
This can be modeled as a generalized linear mixed effects model (GLMM).

• Learning to Rank (MLPP 9.7) is a problem of finding a function that can rank order a set of items given a
query. Suppose we have a query q and a set of documents d1, . . . , dm that might be relevant to q. We would
like to sort the documents in decreasing order of relevance. Let’s say we define the relevance of a document
d to query q, as sim(q, d) , P(q|d) =

∏n
i=1 P(qi|d), where qi is the ith word in the query and P(qi|d) is a

multinoulli distribution estimated from document d:

– One method for learning to rank is a pointwise approach (MLPP 9.7.1), where we collect training data
where we give the relevance of set of documents for each query. We define a feature vector x(q, d) for each
query document pair. If the training labels are binary (i.e. relevant or not relevant), we have standard
binary classification P(y = 1|x(q, d)). If the training labels are ordered relevancy labels, we can use
ordinal regression to give a rating P(y = r|x(q, d)).

– Since it is easier to compare to objects rather than give an absolute relevance, we can develop a pairwise
approach (MLPP 9.7.2). In this case we have binary classification P(yjk = 1|x(q, dj),x(q, dk)) if the
relevance of document dj is greater than dk. If we map the relevance to a scoring function f(·), we can
transform this to:

P(yjk = 1|x(q, dj),x(q, dk)) = sigm (f(xj)− f(xk)) (8.9)

– There’s also a listwise approach which considers the relative relevance of all the documents simultaneously
(MLPP 9.7.3).

• You can see different loss functions for ranking at (MLPP 9.7.4) which can be used for optimizing to find an
optimal ranking.

21

Ahmad Humayun Machine Learning Notes

X1 X2

X3 X4

X5 X6

(a) Example Directed Acyclic Graph

y

x1 x2 x3 x4

(b) Näıve Bayes Classifier

x1 x2 x3 x4

(c) First order Markov chain

x1 x2 x3 x4

(d) Second order Markov chain

Figure 1: Examples of DGM. Grayed nodes indicate observed variables, whereas white indicate hidden/latent ones.

9 Directed Graphical Models (Bayes Network / Belief Network)

• The chain rule (MLPP 10.1.1) which can be used to represent a joint distribution as follows (ordering of
variables could be changed):

P(x1:V) = P(x1)P(x2|x1)P(x3|x1, x2)P(x4|x1, x2, x3) . . .P(xV |x1:V−1) (9.1)

The conditioning parameter θ is dropped due to brevity. Suppose each variable has K states, then P(x1) can
be represented by O(K) numbers (K − 1 to be exact). P(x2|x1) can be represented with O(K2) numbers
by writing P(x2 = j|x1 = i) = Tij ; we say that T is a stochastic matrix because each row needs to sum to
1:
∑
j Tij = 1. T is called the conditional probability table (CPT). You can condense the CPT to a

condition probability distribution (CPD) which is useful for evaluating the probability once all x1:T is
observed; we can also use it for class-conditional density P(x|y = c), thus making generative classifier. But,
this is not useful for prediction because it depends on all other variables.

• Recall that variables X and Y are conditionally independent (CI) given Z if:

X ⊥ Y |Z ⇐⇒ P(X,Y |Z) = P(X|Z)P(Y |Z) (9.2)

If we suppose xt+1 ⊥ x1:t−1|xt, or in other words “the future is independent of the past, given the present.”
This is called the (first order) markov assumption. We can use the same assumption to break down the
joint distribution in Equation 9.1:

P(x1:V) = P(x1)

V∏
t=2

P(xt|xt−1) (9.3)

This is called the (first order) markov chain. This can be represented by an initial distribution over states
P(x1 = k), plus a state transition matrix P(xt = j|xt−1 = i)

• A graphical model (GM) is a way to represent a joint distribution by making CI assumptions. In particular,
the nodes in the graph represent random variables, and the (lack of) edges represent CI assumptions.

• A directed graphical model (DGM) is a graphical model whose graph is a DAG (directed acyclic graph
(DAG) is a directed graph with no directed cycles. On a similar note, a directed tree is a DAG. If we allow
a node to have multiple parents, its a polytree; and with single parents it is a moral tree). DGM are also
called Bayesian Networks, Belief Networks, or Causal Networks.

• A Markov blanket of a variable is its parents, its children, and the children of its parents (excluding itself)
(BRML Def 2.5). For instance, in Figure 1a, the markov blanket of variable x4 is x1, x2︸ ︷︷ ︸

parents

, x5, x6︸ ︷︷ ︸
children

, x3︸︷︷︸
parents of children

.

22

Machine Learning Notes Ahmad Humayun

We can also say that all the information about xi is contained in its markov blanketMB(xi). In other words
two variables xi and xj (where xj 6∈ MB(xi)) are conditionally independent given the markov blanket of
one of them i.e. xi ⊥ xj |MB(xi) (BRML Remark 3.3). Essentially, the markov blanket MB(xi) is the
smallest set of nodes which renders the node xi conditionally independent of all other nodes in the graph. In
Figure 1a, for x4, the full conditional is the probability involving all conditionals in the markov blanket:
P(x4|x1, x2)P(x6|x4)P(x5|x3, x4).

• The key property of DAGs is that the nodes can be ordered such that parents come before children. This is
called a topological ordering, and it can be constructed from any DAG. Given such an order, we define the
ordered Markov property to be the assumption that a node only depends on its immediate parents, not
on all predecessors in the ordering, i.e.:

xs ⊥ xpred(s)\pa(s) | xpa(s) (9.4)

where pred(s) are all the predecessors of s, whereas pa(s) are just the parents of s. This is a natural
generalization of the first-order Markov property to from chains to general DAGs. For instance for the
DAG in Figure 1a encodes the following joint distribution:

P(x1:6) = P(x1)P(x2|��x1)P(x3|x1,��x2)P(x4|x1, x2,��x3)P(x5|���x1, x2 , x3, x4)P(x6|(((((x1, x2, x3 , x4,��x5)

(9.5)

= P(x1)P(x2)P(x3|x1)P(x4|x1, x2)P(x5|x3, x4)P(x6|x4) (9.6)

P(~x1:V |G) =
∏
i

P(xi|xpa(i)) (9.7)

The part P(·|G) is there to indicate that the CI are only true for the graph G. Note that if each node has K
states and has O(F) parents, then the number of total parameters in all the CPTs will be O(V KF), which is
much less than the model which makes no CI assumptions, O(KV).

– (MLPP 10.2.1) Näıve Bayes Classifier assumes the features are conditionally independent given the class
label. This is illustrated in Figure 1b. This allows us to write the distribution as follows, where D is the
number of features:

P(y,x) = P(y)

D∏
j=1

P(xj |y) (9.8)

– (MLPP 10.2.2) In a first order markov chain (Figure 1c) the assumption as that for random variable
xt, knowing xt−1 is enough to know about x1:t−2. In a second order markov chain (Figure 1d) the
dependence for xt include xt−2 apart from xt−1:

P(x1:V) = P(x1)P(x2|x1)

V∏
t=3

P(xt|xt−1, xt−2) (9.9)

Unfortunately even second order markov assumption maybe inadequate if there are long-range correla-
tions amongst observations (ofcourse building higher and higher order models would result in having to
estimate too many parameters). The alternative is to assume that there is an underlying hidden process
that can be modeled by a first-order Markov chain, but that the data is a noisy observation of this
process. The result is known as a Hidden Markov model (HMM), and is illustrated in Figure 2a.
Here, z are the hidden variables, and x are observed variables. The CPD P(zt|zt−1) is the transition
model, whereas the CPD P(xt|zt) is the observation model. We are usually interested in inferring
the hidden variables - like the words spoken from the observed variable - like the sound waveform. We
would like to compute the hidden state given the data, i.e. to compute P(zt|x1:t,θ) - this is called state
estimation.

23

Ahmad Humayun Machine Learning Notes

z1 z2 z3 z4

x1 x2 x3 x4

(a) First order HMM

π

yi

xi1 xiD

θc1 θcD

N

C

(b) Näıve Bayes with single plates

π

yi

xid

θdc

N

C D

(c) Näıve Bayes with nested plates

Figure 2: Other DGM examples

• Generally, Inference in a graphical model simply means computation of marginal probabilities. Mathemati-
cally, marginal probabilities are defined in terms of sums over all the possible states of all the other nodes in
the system. For example if we want the marginal probability of the last node P(xN), we in general need to
compute:

P(xN) =
∑
x1

∑
x2

· · ·
∑
xN−1

P(x1, x2, · · · , xN) (9.10)

In later Sections, we will refer to the marginal probabilities that we compute approximately as “beliefs,” and
denote the belief of a node i as bel(xi).

• Estimating unknown quantities from known ones is called probabilistic inference (MLPP 10.3). Concretely,
inference refers to computing the posterior distribution of unknowns xh, given the knowns xv:

P(xh|xv,θ) =
P(xh,xv|θ)

P(xv|θ)
=

P(xh,xv|θ)∑
x′h
P(x′h,xv|θ)

(9.11)

Essentially we are conditioning on the data by clamping the visible variables to their observed values, xv,
and then normalizing, to go from P(xh,xv) to P(xh|xv). Also if some of the hidden variables are not of
interest, we can marginalize them out: P(xq|xv,θ) =

∑
xn
P(xq,xn|xv,θ).

• Learning (MLPP 10.4) usually means computing a MAP estimate of the parameters from the data:

θ̂ = arg max
θ

N∑
i=1

logP(xi,v|θ) + logP(θ) (9.12)

where xi,v are the visible variables in case i. To a Bayesian, there is no difference between learning and
inference because the parameters are unknown variables and should also be inferred. In this view, the main
difference between hidden variables and parameters is that the number of hidden variables grows with the
amount of training data (since there is usually a set of hidden variables for each observed data case), whereas
the number of parameters in usually fixed (at least in a parametric model).

• When inferring parameters from data, we often assume the data is iid. This is illustrated between the D
features of xid in Figure 2b. This illustrates the assumption that each case was generated independently but
from the same distribution. Notice that the N data points are only independent conditional on the parameter

24

Machine Learning Notes Ahmad Humayun

x1

x2 x3

x4

x5

(a) x4 is a collider on the path
x1 − x2 − x4 − x3

x1

x2

x3

x4

x5

(b) An example where x1 and x5 are
dependent given x3

Figure 3: DGM concepts for d-separation and d-connection

π; marginally, the data cases are dependent. Nevertheless, we can see that, in this example, the order in
which the data cases arrive makes no difference to our beliefs about π, since all orderings will have the same
sufficient statistics. Hence we say the data is exchangeable.

• The plates (rounded rectangles) (MLPP 10.4.1) around nodes just represent repetition of variables by the
amount specified in the lower right corner. For example, the top plate in Figure 2b specifies that there are N
data cases, and there are C class parameters. In the latter case the dots between specify that there is a class
parameter for each of the D features. The model in Figure 2c specifies the same model as Figure 2b. One
problem with this representation is that it doesn’t indicate that θdc is used to generate xid iff yi = c, otherwise
it is ignored. This is an example of context specific independence, since CI relationship xid ⊥ θdc only
holds if yi 6= c. The Nav̈e Bayes classifier joint probability in these figures can be written as:

P(xi, yi = c,θc, π) = P(π)

N∏
i=1

(
P(yi = c|π)

D∏
d=1

P(xid | yi = c, θdc)

)
(9.13)

• At the heart of any graphical model is a set of conditional independence assumptions. We write xA ⊥G xB |xC
if A is independent of B given C in the graph G. Let I(G) be the set of all such CI statements encoded in
the graph. We say that G is an I-map (independence map) for distribution p, or that p is Markov wrt G,
iff I(G) ⊆ I(p), where I(p) is the set of all CI statements that hold for distribution p. In other words, the
graph is an I-map if it does not make any assertions of CI that are not true of the distribution. Note that a
fully connected graph is an I-map of all distributions, since it makes no CI assertions at all (since no edges
are missing). We therefore say G is a minimal I-map of p if G is an I-map of p, and if there is no G′ ⊂ G
which is an I-map of p.

• (BRML 3.3.2) Given a path P, a collider is a node c on P with neighbors a and b on P such that a→ c← b.
If there is a path between x and y which contains a collider, and this collider (or any of its descendants) are
not in the conditioning set, then this path does not make x and y dependent. If there is a path between x and
y which contains no colliders and no conditioning variables, then this path d-connects x and y. Note that a
collider is defined relative to a path. In simple terms, the path should be such that the arrows adjacent to d
on the path should point toward it. Figure 3a shows that x4 is collider on the path x1− x2− x4− x3 but not
on the path x1 − x2 − x4 − x5.

• Finding d-separation gives us an easy to find conditional independence in a graph. That is what d(ependence)-
separation actually means. Two disjoint set of nodes X and Y are d-separated, given another disjoint set of
observed nodes E iff each undirected path from every node x ∈ X to every node y ∈ Y is d-separated by E : if
e ∈ E then x ⊥ y | e. Now the question is, what is d-separation? We say an undirected path P is d-separated
by a set of nodes E (containing the evidence) iff at least one of the following conditions are true:

25

Ahmad Humayun Machine Learning Notes

– P contains a chain, s→ m→ t or s← m← t, where m ∈ E .

– P contains a tent or fork, s← m→ t, where m ∈ E .

– P contains a collider or v-structure, s→ m← t, where m 6∈ E and nor any of m’s descendants are in E .

Figure 3b where x1 and x5 are not d-separated given x3 because none of the above conditions are true. The
one of most interest is x4 which is a collider on the path between x1 and x5 but, its descendent, x3 is in the
conditioning set. Hence, x1 6⊥ x5 |x3.

• Some lessons on conditional independence (MLPP 10.5.1):

– Observing a middle node of a chain breaks the Markov chain in two i.e. x→ y → z ⇒ x ⊥ z | y.

– Observing a root node separates its children (as in näıve Bayes classifier) i.e. x← y → z ⇒ x ⊥ z | y.

– Observing a common child does not separate the parents, in other words, makes its parents dependent
i.e. x → y ← z ⇒ x 6⊥ z | y. Although, if we marginalize y out of the distribution, x and z become
independence i.e. x and z are marginally independent over y.

– Observing the parents of a node separates the node from all its non-descendants (excluding its parents)
i.e. t ⊥ nd(t)\pa(t) | pa(t). This is called the directed local markov property.

• We can create an algorithm called Bayes Ball algorithm (MLPP 10.5.1) to see if nodes in x ∈ X and z ∈ Z
are conditionally independent given node y ∈ Y. The nodes Y are shaded, because they indicate that they
have been observed (are in the conditional set). The aim of the game is to reach from any node in X to any
node in Z. If you can find such a path, then X and Z are conditionally dependent given Y. The rules can be
derived from the list above.

• Influence (decision) diagrams are used to represent multi-stage (Bayesian) decision problems by using
graphical notation. It has three kinds of symbols: (1) random variables / chance nodes which are denoted
by oval as before; (2) decision nodes where you have to take a decision/action, represented by rectangles;
and (3) utility nodes / value nodes which tell the reward/loss for taking certain actions, represented by
diamonds. What we need to computed is the expected utility given a decision. So let’s say our decision
variable is d. Let’s say our utility depends on this decision d and a latent state h. The utility is defined for
each decision d ∈ D against the hidden state h ∈ H: U(d, h):

EU(d) =
∑
h∈H

P(h)U(d, h) (9.14)

We just need to find the decision d∗ which maximize the expected utility arg maxd EU(d).

• Partially Observed Markov Decision Process (POMDP) (see Section 25) are basically HMMs aug-
mented with actions and reward nodes (some explanation). Unlike POMDP, in Markov Decision Process
(MDP) (see Section 25) all states are fully observed. This is much easier to solve because we only have to
compute the mapping from observed states to actions - which can be solved by dynamic programming (BRML
7.5).

10 Mixture Models and the EM Algorithm

• Models with hidden variables are also known as Latent Variable Models (LVMs) (MLPP 11.1). Even
though such models might be harder to fit, they have less parameters than models that directly represent
correlation in the visible space. Plus the hidden variables can serve as a bottleneck, which computes a
compressed representation of data. Figure 4a shows an LVM with L latent variables, and D visible variables,
where usually D � L.

26

Machine Learning Notes Ahmad Humayun

zi1 ziL

xi1 xiD

(a) A many-to-many LVM

xi1

zi

yi

(b) Mixture of Experts

θz

zi

xi

θx

N

(c) LVM represented as a DGM

• (MLPP 11.2) If the LVM has a discrete prior representing a discrete latent state i.e. zi ∈ {1, . . . ,K}, we will
use a discrete prior for this, P(zi) = Cat(π). For the likelihood we use P(xi|zi = k) = Pk(xi), where Pk is
the k’th base distribution for the observations. The overall model is known as a mixture model, since we
are mixing together K base distributions as follows:

P(xi|θ) =

K∑
k=1

πkPk(xi|θ) (10.1)

This is a convex combination of the Pk since we are taking a weighted sum, where the mixing weights πk
satisfy 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1.

• Mixture of Gaussians (MoG) or Gaussian Mixture Model (GMM) (MLPP 11.2.1), is where each
base distribution in the mixture is a multivariate Gaussian with mean µk and covariance matrix Σk:

P(xi|θ) =

K∑
k=1

πkN (xi|µk,Σk) (10.2)

• Suppose our data consists of D-dimensional bit vectors. In this case the appropriate class conditional density
is a product of Bernoullis, which is called the Mixture of Multinoullis (MLPP 11.2.2):

P(xi|zi = k,θ) =

D∏
j=1

Ber(xij |µjk) =

D∏
j=1

µ
xij
jk (1− µjk)1−xij (10.3)

where µjk is the probability that bit j turns on in cluster k.

• Mixture models are used for density modeling P(xi) which are useful in data compression, outlier detection,
and creating generative classifier, where we model each class-conditional density P(x|y = c). Another use is
to use them for clustering (MLPP 11.2.3), where we compute the posterior probability of point xi belonging
to mixture k. This is also known as the responsibility of cluster k for point i:

rik , P(zi = k|xi,θ) =
P(zi = k|θ)P(xi|zi = k,θ)∑K

k′=1 P(zi = k′|θ)P(xi|zi = k′,θ)
(10.4)

This is called soft clustering and is identical to generative classifiers except that, here, we never observe
zi (whereas in generative classifier we observe yi, which acts as zi in training time). We can also do hard
clustering where we find the MAP solution for above:

z∗i = arg max
k

logP(zi = k|xi,θ) = arg max
k

(logP(zi = k|θ) + logP(xi|zi = k,θ)) (10.5)

27

Ahmad Humayun Machine Learning Notes

You can represent each mixture / cluster by its prototype or centroid. One word of caution is on the
selection of K - having too little might not model the data well - having too many would encourage the use of
some clusters in artificially splitting some latent factor, which need not be. Adding a little bit of supervision
or using informative priors can help a lot in such cases.

• We can also use mixture models for discriminative methods. For instance if you are doing linear regression
for house prices in a city against some attribute of the house for instance the location, it might make sense to
have different models for different areas. This makes sense because the prices in certain neighborhoods might
be better defined by their own models than having a single model to describe the prices in the whole city. In
the latter case, a single model might also break when using regularization, because inherently the model would
demand a lot of flexibility to explain the data. Hence we can apply a different regression (or classification)
function for a different part of the input space. We can model this by allowing the mixing weights and the
mixture densities to be input dependent which is represented in Figure 4b:

P(yi|xi, zi = k,θ) = N (yi|wT
kxi, σ

2
k) (10.6)

P(zi|xi,θ) = Cat(zi|S(VTxi) (10.7)

This is called a mixture of experts (MLPP 11.2.4) - i.e. each model is considered an expert in a certain
region of the input space. P(zi = k|xi,θ) is called the gating function because it decides what expert to
use. The overall prediction can be written as:

P(yi|xi,θ) =
∑
k

P(yi|xi, zi = k,θ)P(zi = k|xi,θ) (10.8)

Mixture of Experts can also be used for inverse problem where each input might have multiple answers. For
instance, consider the location of the end effector of a robot y and the states of its joints x. Each location of
the end effector might be produced by multiple joint configurations.

• (MLPP 11.3) When we have complete data and a factored prior, the posterior over the parameters also
factorizes, making computations very simple. Unfortunately this is not true if we have missing data/hidden
variables. If we look at Figure 4c which is a DGM of an LVM, we can see that θz and θx are dependent,
making parameter estimation hard. But, if we observe zi, then by d-separation θz ⊥ θx|D and hence the
posterior would factorize. When we have not observed zi, it also complicates the computation of MAP and
ML estimates. This is because whenever you choose a different zi we get a different unimodal likelihood.
When we marginalize zi out, we get a multi-modal posterior for P(θ|D). These modes correspond to different
labeling of the clusters. This leads to parameters which are unidentifiable (MLPP 11.3.1) since there is no
unique MLE - hence there cannot be a unique MAP estimate - and hence the posterior must be multimodal.
Hence, for instance, finding the optimal MLE for a GMM is a NP-hard. The most common work-around is
just to approximate a MAP estimate - like in EM algorithm. The reasoning behind it clear from Figure 4c
where there are N latent variables, each of which get to see one data point. However there are only two latent
parameters each of which gets to see N data points. Hence, the posterior uncertainty about the parameters is
much less than the posterior uncertainty over the variables, which justifies the computing of P(zi|xi, θ̂) while
not bothering about P(θ|D). It can be proved that the likelihood function in the case when zi is not observed
is non-convex.

• As said before, if we have missing data and/or latent variables, then computing the ML/MAP becomes hard.
One way is to apply a gradient-based optimizer to find a local minimum of the NLL: `-(θ = − 1

N logP(D|θ).
But, this scheme might be hard if you want to enforce additional constraints. An easier technique is to
use Expectation Maximization (MLPP 10.4), which is a simple iterative algorithm, often with closed-
form updates at each step. It alternates between two steps: (1) E Step: infer the missing values given the
parameters; (2) M Step: optimize the parameters given the “filled in” data. This is essentially exploiting
the fact that if the data was fully observed, computing the ML/MAP estimate would be easy.

28

Machine Learning Notes Ahmad Humayun

• (MLPP 11.4.1) EM algorithm defines the complete data log likelihood term as follows, which could be solved
if zi was observed:

`c(θ) ,
N∑
i=1

logP(xi, zi|θ) (10.9)

This cannot be computed because zi is unknown. So in this case, the goal of the E step is to compute the
expected sufficient statistics (ESS) which are terms inside the expected complete data likelihood (on
which the MLE depends on):

B(θ,θt−1) = E
[
`c(θ)|D,θt−1

]
(10.10)

where t is the current iteration number. B is called the auxiliary function / the lower bound. The
expectation is taken wrt the old parameters, θt−1, and the observed data D. In the M step we optimize the
auxiliary function wrt θ:

θt = arg max
θ

Q(θ,θt−1) (10.11)

To perform MAP estimate we maximize after adding the log prior logP(θ). The EM algorithm increase the
log likelihood of the observed data (plus the log prior, if doing MAP).

• EM for GMM (MLPP 11.4.2): given the number of mixture components K is known. The E step computes
the responsibility for each point given a mixture:

rik =
πkP(xi|θt−1

k)∑
k′ πk′P(xi|θt−1

k′)
(10.12)

The M step, we optimize B wrt π and θk. We compute, πk = 1
N

∑
i rik, which essentially is the weighted

number of points assigned to cluster k:

µk =

∑
i rikxi∑
i rik

Σk =

∑
i rik(xi − µk)(xi − µk)T∑

i rik
(10.13)

After computing the new estimates, we set θt = (πk, µk,Σk) for k = 1 : K and go to the next E step.

• In GMM EM it often helps convergence by removing the mean and dividing by the standard deviation.

• A popular variant of GMM EM is k-means where we suppose that Σk = σ2ID is fixed and πk = 1
K is fixed,

so the only thing that needs to be updated is µk ∈ RD. Here the posterior computed during the E step is:

P(zi = k|xi,θ) ≈ I(k = z∗i) (10.14)

where z∗ = arg maxk P(zi = k|xi,θ). This is sometimes called hard EM because we are doing hard assignments
of points to clusters. Since the covariance is spherical, the most probabale cluster can be simply found by:

z∗i = arg min
k

‖xi − µk‖22 (10.15)

Given the hard cluster assignments, the M step updates each cluster center by computing the mean of all
points assigned to it:

µk =
1

Nk

∑
i:zi=k

xi (10.16)

Since K-means is not a proper EM algorithm, since it is not maximizing likelihood. Instead, it can be
interpreted as a greedy algorithm for approximately minimizing a loss function related to data compression
(MLPP 11.4.2.6)

29

Ahmad Humayun Machine Learning Notes

• Both k-means and EM needs to be initialized (MLPP 11.4.2.7). It is common to pick K data points at
random, and make them as initial cluster centers. The other method that works well is to pick the initial
point uniformly at random. Then each subsequent point is picked from the remaining points with probability
proportional to its squared distance to the points’ closest cluster center.

• MLE might overfit data quite severely. For instance it is possible to get one of the centers a single data point,
which will result in likelihood of infinity. This called the collapsing variance problem. An easy solution to
this is to perform MAP estimation. When the dimensionality increases, usually MLE falls into degenerate
solutions, making MAP estimation the only feasible solution (MLPP 11.4.2.8).

• EM for mixture of experts (MLPP 11.4.3).

• EM can be generalized for DGM with hidden variables (MLPP 11.4.4). In the E step, we just estimate the
hidden variables and in the M step we will compute the MLE using these filled-in values. We will suppose
that all CPDs are in tabular form. Ntck is the number of times node t is in state k while its parents are in
state c. Where if computing MAP, the mean is:

θ̄tck =
Ntck + αtck∑
k′(Ntck′ + αtck′)

(10.17)

If it was MLE, the mean would take the same form, except without αtck. Hence, each CPT can be written
as:

P(xit|xi,pa(t),θt) =

Kpa(t)∏
c=1

Kt∏
k=1

θ
I(xit=k,xi,pa(t)=c)
tck (10.18)

where Kpa(t) is the number of states the parents of t can be in, and Kt is the number of states node t can be
in. Hence the log likelihood takes the form:

logP(D|θ) =

V∑
t=1

Kpa(t)∑
c=1

Kt∑
k=1

Ntck log θtck (10.19)

Hence, the complete data log likelihood is:

E[logP(D|θ)] =
∑
t

∑
c

∑
k

N̄tck log θtck (10.20)

N̄tck =

N∑
i=1

E
[
I(xit = k,xi,pa(t) = c

]
=
∑
i

P(xit = k, xi,pa(t) = c|Di) (10.21)

where i indexes all the N data points. Di are the visible variables in case i. P(xit = k, xi,pa(t) = c|Di) is
known as the family marginal and can be computed using any GM inference method. The N̄tck are the
expected sufficient statistics, and this is the output of the E step. Given this ESS, the output o M step is
simply (if doing MLE):

θ̂tck =
N̄tck∑
k′ N̄tck′

(10.22)

• The EM algorithm (CVPrince 7.3 and 7.8) is a general purpose tool for fitting θ in models of the form:

θ̂ = arg max
θ

[
N∑
i=1

log

[∫
P(xi, zi|θ)dzi

]]
= arg max

θ
L(θ) (10.23)

30

Machine Learning Notes Ahmad Humayun

a)

E-Step

b)

 M-Step

Figure 5: (CVPrince Fig 7.23) showing the steps for EM. The hidden variables zi are represented as hi here.

The EM algorithm works by defining a lower bound B [{qi(zi)},θ] on the log likelihood above and iteratively
increasing this bound. The lower bound is simply a function that is parameterized by and some other
quantities and is guaranteed to always return a value that is less than or equal to the log likelihood L[θ] for
any given set of parameters θ (Figure 5). The lower bound is:

B [{qi(zi)},θ] =

N∑
i=1

∫
qi(zi) log

[
P(xi, zi|θ)

qi(zi)

]
dzi ≤ L[θ] (10.24)

The EM algorithm manipulates both the parameters θ and the distributions {qi(zi)}Ni=1} to increase the lower
bound. It alternates between:

– E step: Updating the probability distribution {qi(zi)}Ni=1} to improve the bound in Equation 10.24.

– M step: Updating the parameters θ to improve the bound in Equation 10.24.

• You can run EM in an online way. One way to do that is incremental EM (MLPP 11.4.8.2). Another
way to do it is by Stepwise EM (MLPP 11.4.8.3) which is usually faster than incremental and batch EM.
In terms of accuracy, stepwise EM is usually as good or sometimes even better than batch EM; incremental
EM was often worse than both methods. In Stepwise EM whenever we compute the sufficient statistics si we
move µ toward it. For each iteration the stepsize ηk is a function of the step number.

• EM can be coupled with deterministic annealing (MLPP 11.4.9) where you smooth the posterior landscape
by raising it to a temperature and then gradually cooling it, which slowly moves the posterior to the original
shape. In some cases doing exact inference in E step is not possible because of the intractability of computing
the exact posterior P(zi|xi,θt)of the latent variables - here if we do approximate inference in E step it is
called variational EM, or if we sample from the posteior it is called Monte Carlo EM.

• Picking the right number of latent variables which controls the model complexity, for instance in case of
mixture models picking K, is non trivial (MLPP 11.5). The optimal Bayesian approach would be to pick
the model with the largest marginal likelihood K∗ = arg maxk P(D|K). There are two problems with doing
that. (1) Evaluating the marginal likelihood for an LVM is quite difficult (possible workarounds are BIC and
cross-validation); (2) Searching over a large number of models can be time consuming. One solution is to do
stochastic sampling in the space of models, which can quickly determine if a certain value of K is poor, hence
does not warrant the exploration of the posterior in the part of model space.

• For non-probabilistic models, one can do model selection (MLPP 10.5.2) by observing the squared reconstruc-
tion error - which in the case of k-means is just finding the sum of distances to the closest cluster center

31

Ahmad Humayun Machine Learning Notes

(MSE). Note, that if we were using a probabilistic model, we could have observed the NLL on the test set
and found the trough in the u-shaped curve. This is one of the big arguments for using probabilistic models.
If you are forced to use a non-probabilistic model and have to choose a K, one way is to find a knee in the
reconstruction error graph with increasing K. The idea is the with K < K∗, where K∗ is some true number
of clusters, the rate of decrease of error would be high since we splitting things that should not be grouped
together. When K > K∗ the error reduces at a much slower rate because we are artificially breaking natural
clusters.

• Fitting models with missing data (MLPP 11.6).

11 Latent Linear Models

• (MLPP 12.1) One limitation of mixture model is that only a single latent variable is used to generate observa-
tions. In particular, each observation can only come from one of the K prototypes. An alternative is to use a
vector of real-valued latent variables zi ∈ RL. The simplest prior is to use a Gaussian: P(zi) = N (zi|µ0,Σ0).
If the observations are also continuous, so xi ∈ RD, we may use a Gaussian for the likelihood. Like in linear
regression, we can suppose the mean is a linear function of the latent variables:

P(xi|zi,θ) = N (xi |Wzi + µ,Ψ) (11.1)

where W is a D×L factor loading matrix, and Ψ is a D×D diagonal covariance matrix (since the whole
point of the model is to force zi to explain the correlation, rather than having it inside the covariance). This
model is called Factor Analysis (FA). When Ψ = σ2I, is called Probabilistic Principal Components
Analysis (PPCA).

• The induced marginal distribution of FA is a Gaussian:

P(xi|θ) =

∫
N (xi|Wzi + µ,Ψ)N (zi|µ0,Σ0)dzi (11.2)

= N (xi|Wµ0 + µ,Ψ + WΣ0W
T) (11.3)

We can set µ0 = 0 and absorb it into µ. Similarly, we can set Σ0 = I and absorb that into a new factor

loading matrix W̃ = WΣ
− 1

2
0 . We thus see that FA approximates the covariance matrix of the visible vector

using a low-rank decomposition (MLPP 12.1.1).

• (MLPP 12.1.2) The hope FA is that latent factors z would reveal something interesting about the data. To
do this we need to compute the posterior over the latent factors:

P(zi|xi,θ) = N (zi|mi,Σi) (11.4)

Σi ,
(
Σ−1

0 + WTΨ−1W
)−1

(11.5)

mi , Σi

(
WTΨ−1(xi − µ) + Σ−1

0 µ0

)
(11.6)

Note, that Σi is independent of i hence can be denoted as Σ. You can view each point by ploting the latent
factors / latent scores mi in the latent RL space.

• The parameters of an FA model are unidentifiable (MLPP 12.1.3). This is because we can not uniquely identify
W, and as a corollary the latent factors. Non-identifiability does not affect the predictive performance of the
model, however, it does affect the loading matrix, and hence the interpretation of the latent factors. A few
solutions to make W identifiable: (1) force it to be orthonormal, (2) force it to be lower triangular, (3) induce
zeros by putting a sparsity promoting priors on the weights.

32

Machine Learning Notes Ahmad Humayun

π

qi zi

xi
Ψ

µk

Wk

N K

Figure 6: DGM of a Mixture of Factor Analysis (MFA)

• (MLPP 12.1.4) FA model assumes that the data lives on a low dimensional linear manifold. In reality, most
data is better modeled by some form of low dimensional curved manifold. One way to approximate it is to
use a piecewise linear manifold. Let the k’th linear subspace of dimensionality Lk be represented by Wk for
k = 1 : K. Suppose we have a latent indicator qi ∈ {1, . . . ,K} specifying which subspace we should use to
generate the data. We then sample zi from a Gassian prior and pass it through the Wk matrix (where k = qi)
and add noise. More precisely, the model is as follows:

P(xi|zi, qi = k,θ) = N (xi|µk + Wkzi,Ψ) (11.7)

P(zi|θ) = N (zi|0, I) (11.8)

P(qi|θ) = Cat(qi|π) (11.9)

This is called a mixture of factor analysers (MFA). This is shown in Figure 6.

• (MLPP 12.2) When Ψ = σ2I, and W to be orthonormal, and when σ2 → 0, this model reduces to Principal
Component Analysis. When σ2 > 0 it is known as Probabilistic PCA (PPCA). Moreover, PPCA does
not require W to be orthogonal.

• (MLPP 12.2.1) Suppose we want to find an orthogonal set of L linear basis vectors wj ∈ RD and the
corresponding scores zi ∈ RL, such that we minimize the average reconstruction error:

J(W,Z) =
1

N

N∑
i=1

‖xi − x̂i‖2 (11.10)

where x̂i = Wz, subject to the constraint that W is orthonormal. Equivalently we can write the objective as
follows:

J(W,Z) = ‖X−WZT‖2F (11.11)

where Frobenius norm is ‖A‖F = ‖A(:)‖2. The optimal solution is obtained by setting Ŵ = VL where VL

contains the L eigenvectors with largest eigenvalues of the empirical covariance matrix, Σ̂ = 1
N

∑N
i=1 xix

T
i (we

assume the xi have zero mean). Furthermore, the optimal low-dimensional encoding of the data is given by
ẑi = WTxi, which is an orthogonal projection of the data onto the column space spanned by the eigenvectors.

• (MLPP 12.2.1) Since principal directions are the ones which have the maximum variance, you don’t want
PCA to find directions if the scale of two dimensions is different. It is therefore standard practice to normalize
the data before computing PCA.

• You can also use Singular Value Decomposition (SVD) (MLPP 12.2.3) for PCA. This basically generalizes
the notion of eigenvectors to non-square matrices. The schematic 7a shows the decomposition of matrix X into
USVT. U matrix has orthonormal columns ui which are the left singular vectors (UUT = IN×N). V matrix
has orthonormal rows and columns, where the columns vi are the right singular vectors (VTV = VVT = ID×D).

33

Ahmad Humayun Machine Learning Notes

N

D

= N

D N −D

D

N−D

D

D

D

X = U × S × VT

| |
u1 · · ·uD
| |

σ1
. . .
σD

0

−vT
1−...

−vT
D−

(a) SVD example where N > D

Wx wy

zi

xi yi N

(b) Supervised PCA

Figure 7

S has min(N,D) singular values σi ≥ 0 on the diagonal with the rest of the matrix being 0. We can always
drop the lower (N −D) ×D part of S and, hence, the N × (N −D) left part of U, because they wouldn’t
contribute to X. This form of SVD takes O(NDmin(N,D)) time to compute. It can be proved that the
eigenvectors of XTX are equal to V, the right singular vectors of X. Also, the eigenvectors of XXT are equal
to U, the left singular vectors of X. The eigenvalues of both XTX and XXT are equal to the squared singular
values, σ2

i .

• SVD can be used for a low rank approximation of X, so that we only use L < min(N,D) singular values.
This curtails all the matrices in the decomposition, hence only picking L left and right singular vectors, giving
truncated SVD:

X︸︷︷︸
N×D

≈ UL︸︷︷︸
N×L

SL︸︷︷︸
L×L

VT
L︸︷︷︸

L×D

(11.12)

From PCA, we know that Ŵ = VL and Ẑ = XŴ = ULSLVT
LVL = ULSL. Moreover, since X̂ = ẐŴT, we

deduce that X̂ = ULSLVT
L. This shows that PCA is the same as truncated SVD - and shows that PCA is

the best low rank approximation to the data.

• More about probabilistic PCA in (MLPP 12.2.4).

• Apart from SVD, we can use EM to fit a PCA model (MLPP 12.2.5). Let Z̃ be a L×N matrix storing the
posterior means (low-dimensional representations) along its columns. Similarly, X̃ = XT. In the E step we
just compute the orthogonal projection of the data:

Z̃ = (WTW)−1WTX̃ (11.13)

The M step is like linear regression where we replace the observed inputs by the expected values of the latent
variables:

W = X̃Z̃T(Z̃Z̃T)−1 (11.14)

The EM algorithm converges to a solution where W spans the same linear subspace as that defined by the first
L eigenvectors. There is a cool analogy for EM for PCA in the case D = 2 and L = 1. Consider some point
in R2 attached by springs to a rigid rod, whose orientation is defined by a vector w. Let zi be the location
where the i’th spring attaches to the rod. On the E step, we hold the rod fixed, and let the attachment points
slide around so as to minimize the spring energy (which is proportional to the sum of squared residuals). In
the M step, we hold the attachment points fixed and let the rod rotate so as to minimize the spring energy.
If N,D � L, EM can be faster than SVD for PCA. Furthermore, advantages usually coupled with EM are
transferred to this method too.

34

Machine Learning Notes Ahmad Humayun

• Model selection in FA/PPCA (MLPP 12.3.1) can be performed in a way where we set the model to its
maximal size, and then use a technique called automatic relevancy determination, combined with EM to
automatically prune out irrelevant weights. When the sample size is small, the method automatically prefers
simpler models, but as the sample size gets sufficiently large, the method adopts a more complex model.

• Since PCA is not a probabilistic method, you would need to use other techniques for model selection (MLPP
12.3.2). Seeing the reconstruction error is one method which is given by x̂i = Wzi+µ where zi = WT(xi−µ),
and W and µ are estimated from Dtrain. But, you would notice that the error keeps going doing with
increasing principal components, because PCA is a compression technique (the more latent dimensions you
give, the better it will be able to approximate the test data). Another way is to see the retained eigenvalues in
decreasing order. Since these techniques don’t give a clear signal we need to use an alternate technique. One
way to do this is to find a regime change / kink in the error graph. For instance if λk is some form of error
such that λ1 ≥ λ2 ≥ · · · ≥ λLmax

- for instance in PCA this can be eigenvalues. We want to find a threshold
L, such λk ∼ N (µ1, σ

2) if k ≤ L, and λk ∼ N (µ2, σ
2) if k > L. Hence we partition the data L = 1 : Lmax

and compute the MLE. This gives us the profile log likelihood:

`L =

L∑
k=1

logN (λk|µ1(L), σ2(L)) +

K∑
k=L+1

logN (λk|µ2(L), σ2(L)) (11.15)

Finding L∗ = arg max `L, gives a good way of choosing the right model.

• You can also do PCA for categorical data with a Gaussian prior, and categorical model conditioned on ~zi
enveloped in a softmax function (MLPP 12.4).

• When you want to combine two sets of related data into a low dimensional embedding, it is an example of
data fusion. One task is to predict one element of the pair, say yi, from the other one, xi. The supervised
PCA (MLPP 12.5.1) model is:

P(zi) = N (0, IL) (11.16)

P(yi|zi) = N (wT
uzi + µy, σ

2
y) (11.17)

P(xi|zi) = N (Wxzi + µx, σ
2
xID) (11.18)

which is shown in Figure 7b. This model is like PCA, except that the target variable yi is taken into
account when learning the low dimensional embedding. Because the model is jointly Gaussian, P(yi|xi) is
also Gaussian. Other techniques in this area are partial least squares (MLPP 12.5.2) and canonical
correlation analysis (MLPP 12.5.3).

• If the goal is to separate many people speaking simultaneously forming a linear combination on a single
recording, it is a kind of blind signal separation or blind source separation (MLPP 12.6), where “blind”
means we know nothing about the source of the signals. We can formalize the problem, with xt ∈ RD is the
observed signal at the sensors at “time” t, and zt ∈ RL be the vector of source signals:

xt = Wzt + εt (11.19)

where W, the mixing matrix, is an D × L matrix, and ε ∼ N (0,Ψ). The goal is to infer the source signals,
P(zt|xt,θ). Uptil the model looks very similar to FA/PCA. In PCA, though, we suppose each source is
independent i.e. we suppose the prior P(zt) is Gaussian. In this model we will relax this assumption, and let
the source distributions be any non-Gaussian distribution:

P(zt) =

L∏
j=1

Pj(ztj) (11.20)

35

Ahmad Humayun Machine Learning Notes

Without loss of generality, we can constrain the variance of the source distributions to be 1, because any
other variance can be modeled by scaling the rows of W appropriately. This model is called Independent
Component Analysis (ICA) (MLPP 12.6). One limitation of ICA is that W needs to be square, i.e. same
number of signal sources as sensors.

• MLE for ICA (MLPP 12.6.1).

12 Sparse Linear Models

• Sometimes prediction is possible only when a set of variables are seen in unison (MLPP 13.1). This se-
lection can be done using a model-based approach. If the model is a generalized linear model of the form
P(y|x) = P(y|f(wTx)), we can encourage the weight vector w to be sparse (i.e. mostly zeros). Advantages
of such models include: (1) finding relevant features when N � D, because you don’t want to overfit; (2)
it includes models where the problem is finding the most useful subset of training examples, which can help
reduce overfitting and computational cost (this is known as sparse kernel machine; (3) finding a small
number of basis functions for sparse representation of a signal.

• Variable selection can also be posed in a Bayesian way (MLPP 13.2). Let γj = 1 when variable j is selected,
and γj = 0 when its not. Our goal would be to compute the posterior over models:

P(γ|D) =
e−f(γ)∑
γ′ e
−f(γ′)

(12.1)

where f(γ) is the cost function for selecting a variable: f(γ) , − [logP(D|γ) + logP(γ)]

One way to see if a particular variable is useful is to compute the posterior marginal inclusion probabilities
P(γj = 1|D). From this we can just compute the median model by deciding a threshold τ :

γ̂ = {j : P(γj = 1|D) > τ} (12.2)

Note that when the number of variables are D, there are 2D way of choosing your variables (possible models).
It will be impossible to compute the full posterior if we are looking a large number of dimensions, or even
handling summaries such as the marginal inclusion probabilities.

• The posterior is P(γ|D) ∝ P(γ)P(D|γ).
It is common to use the following prior on the bit vector:

P(γ) =

D∏
j=1

Ber(γj |π0) = π
‖γ‖0
0 (1− π0)D−‖γ‖0 (12.3)

logP(D|γ) = −λ‖γ‖0 + const (12.4)

where π0 is the probability a feature is relevant and ‖γ‖0 =
∑D
j=1 γj is the `0 pseudo-norm which in this case

just counts how many variables were selected. The second equation just gives the log prior, where λ , 1−π0

π0

controls the sparsity of the model. The likelihood can be written as:

P(D|γ) = P(y|W,γ) =

∫ ∫
P(y|X,w,γ)P(w|γ, σ2)P(σ2)dwdσ2 (12.5)

where a reasonable prior is N (0, σ2σ2
w) where σ2

w controls how big we expect the coefficients to be. The prior
P(wj |σ2, γj) is spike and slab model (MLPP 13.2.1) because when σ2

w →∞ the distribution P(wj |σj = 1)
approaches a uniform distribution which can be though of as a slab of constant height. Since the marginal
likelihood cannot be computed in closed form, we approximate it using BIC, which becomes:

logP(γ|D) ≈ logP(y|W, ŵγ , σ̂
2)− ‖γ‖0

2
logN − λ‖γ‖0 + const (12.6)

36

Machine Learning Notes Ahmad Humayun

where ŵγ is the ML or MAP estimate based on Xγ , the design matrix where we select only the columns of
X where γj = 1. The model has the form γj → wj → y.

• In the Bernoulli-Gaussian Model (MLPP 13.2.2) to `0 regularization, the model is like γj → y ← wj ,
where unlike the spike-and-slab model we don’t integrate out the irrelevant coefficients. Here the cost function
will become:

f(w) = ‖y −Ww‖22 + λ‖w‖0 (12.7)

This is called `0 regularization. We have converted the discrete optimization problem (over γ ∈ {0, 1}D)
into a continuous one over w ∈ RD; however, the `0 pseudo-norm makes the objective very non-smooth.

• Since the number of model is 2D we definitely cannot fully explore the full posterior. Instead we have to
resort to heurestics. All of the methods we will discuss will search through the space of models and evaluating
the cost f(γ) at each point/model. This requires fitting the model (i.e., computing arg maxP(D|w)), or
evaluating its marginal likelihood (i.e., computing

∫
P(D|w)P(w)dw) at each step. This is sometimes called

the wrapper method, since we “wrap” our search for the best model (or set of good models) around a generic
model-fitting procedure. For this to happen we need an efficient way to evaluate the score for a new model γ′

given a previous model γ. One way to allow this is to change a single bit at a time. If that is the case there
are methods out there to make computing f(γ′) quicker (MLPP 13.2.3):

– Use greedy hill climbing, where at each step we define the neighborhood of the current model to be all
models that can be reached by a single bit of γ. This is called single best replacement. We can start
with an empty set γ = 0.

– If we set λ = 0 in Equation 12.7, so there is no penalty on complexity. Hence we can start with an empty
set, and add one feature which best reduces the cost function. This is equivalent to orthogonal least
squares which in turn is equivalent to greedy forwards selection.

– There are methods based on observing the current residual vector at each step (orthogonal matching
pursuits or matching pursuits).

– You can also start with the full set i.e. γ = 1, and then deleting the worst feature. This is called
backward selection. This is good because variables are removed in the presence of other variables
which might be dependent on it. However, this is sort of infeasible for large problems, since the saturated
model will be too expensive to fit.

• To approximate the posterior one option is to use MCMC (MLPP 13.2.3.2). The standard approach is to
use Metropolis Hastings, where the proposal distribution just flips single bits. This enables the efficient
computation of P(γ′|D) given P(γ|D).

• (MLPP 13.3) Part of the computational difficulty in finding the posterior mode of P(γ,D) is that γj variables
are discrete. One solution is to replace them by continuous variables. This can be done by using continuous
priors that encourage wj = 0 by putting a lot of probability density near the origin, such as a zero-mean
Laplace distribution. If we try to get the MAP estimation, then the penalized log likelihood has the form:

f(w) = − logP(D|w)− logP(w|λ) = NLL(w) + λ‖w‖1 (12.8)

where ‖w‖1 =
∑D
j=1 ‖wj‖ is the `1 norm of w, For suitably large λ the estimate ŵ will be sparse. Indeed,

this can be thought of as a convex approximation to the non-convex `0 objective:

arg min
w

NLL(w) + λ‖w‖0 (12.9)

In the case of linear regression, `1 objective becomes:

f(w) =

N∑
i=1

− 1

2σ2
(yi − (w0 + wTxi))

2 + λ‖w‖1 (12.10)

= RSS(w) + λ′‖w‖1 (12.11)

37

Ahmad Humayun Machine Learning Notes

ŵ ŵ

Figure 8: Illustration of `1, lasso (left) and `2, ridge regression (right) regularization of a least squares problem.
The blue square or circle indicates the bound B on the regularizer and the contours indicate the RSS objective
function. Each contour gives points where the squared error is the same. The `1 corresponds to Laplacian prior
whereas `2 corresponds to Gaussian prior.

where λ′ = 2λσ2. This method is known as basis pursuit denoising (BPDN). In general, the tech-
nique of putting a zero-mean Laplace prior on the parameters and performing MAP estimation is called `1
regularization.

• (MLPP 13.3.1) BPDN objective is the following non-smooth objective function:

min
w

RSS(w) + λ‖w‖1 (12.12)

which can be rewritten as constrained but smooth objective

min
w

RSS(w) s.t. ‖w‖1 ≤ B (12.13)

Here B is an upper bound on the `1 norm of the weights: a small (tight) bound B corresponds to a large
penalty λ, and vice versa. Equation 12.13 is also an example of a quadratic program (QP), since we have
a quadratic objective subject to linear inequality constraints. This equation is also known as the lasso which
stands for “least absolute shrinkage and selection operator”.

• Similarly we can write ridge regression:

min
w

RSS(w) + λ‖w‖22 (12.14)

which can be rewritten as constrained but smooth objective

min
w

RSS(w) s.t. ‖w‖22 ≤ B (12.15)

See Figure 8 where we plot the RSS objective function and the `1 and `2 constraint surfaces. We know that
the optimal solution occurs at the point where the lowest level set of the objective function intersects the
constraint surface. It is clear from the figure that you are more likely to hit a corner in `1 which corresponds
to sparse solutions, which lie on the coordinate axes.

• The lasso objective is given in Equation 12.12. Unfortunately, the ‖w‖1 term is not differentiable whenever
wj = 0 (MLPP 13.3.2). This is an example a non-smooth optimization problem. For this we need to extend
the notion of a derivative to handle these non-smooth functions.

38

Machine Learning Notes Ahmad Humayun

• Lasso is a biased estimator, since it selects a subset of a variables, and shrinks all the coefficients by penalizing
the absolute values.

• The regularization path (MLPP 13.3.4) is the plot of values ŵj(λ) against λ. As we increase λ the solution
vector ŵ(λ) will tend to get sparser, although not necessarily monotonically. It can be shown that each
non-zero coefficient has a piece-wise linear path in the regularization path.

• A downside to using `1 regularization to select variables is that it can give quite different results if the data
is perturbed slightly (MLPP 13.3.5). The Bayesian approach, which estimates posterior marginal inclusion
probabilities P(γj = 1|D) is much more robust. A frequentist solution is to use bootstrap re-sampling, and
rerun the estimator on different version of the data. By computing how often each variable is selected across
different trials we can approximate the posterior inclusion probabilities. This method is known as stability
selection. We can threshold the stability selection (Bootstrap) inclusion probabilities at some level, say
90% and thus derive a sparse estimator. This is class bootstrap lasso (blasso). It can be proven and is
empirically shown that blasso recovers the true model in a wider range of conditions than vanilla lasso.

• `1 regularization algorithms:

– Sometimes its hard to optimize all the variables simultaneously , but it is easy to optimize them one by
one. This is the method of coordinate descent (MLPP 13.4.1) where we solve for the j’th coefficient
with all the others held fixed:

w∗j = arg min
z

f(wzej)− f(w) (12.16)

where ej is the j’th unit vector. We can cycle through the variable deterministically or via sampling at
random.

– LARS (MLPP 13.4.2) works as follows. It starts with a large value of λ, such that only the variable
that is most correlated with the response vector y is chosen. Then λ is decreased until a second variable
is found which has the same correlation (in terms of magnitude) with the current residual as the first
variable. You can solve for this new value of λ analytically. We also allow the removal of variables.

– EM for Lasso (MLPP 13.4.4) which might seem odd because there are no hidden variables. The key
point here is that we represent the Laplace distribution as a Gaussian scale mixture (GSM). In the
presence of all other algorithms why use EM. EM, unlike other methods, gives a way to compute the full
posterior P(w|D), rather than just the MAP estimate. This technique is known as Bayesian Lasso.

• There are some extensions to `1 regularization which are worth noting (MLPP 13.5.1). In the standard case,
we assume 1 to 1 correspondence between the parameters and the variables, so that if ŵj = 0, we interpret
this to mean that variable j is excluded. But in multinomial logistic regression each feature is associated
with C different weights, one per class. In linear regression with categorical inputs each input is one-
hot encoded into a vector of length C. In multi-task learning we are learning multiple related prediction
problems. For instance, we might have C separate regression or binary classification problems. Thus each
feature is associated with C separate weights. Here, we may want to use a feature for all or for none of the
tasks, and thus select weights at a group level. If we use an `1 regularizer of the form ‖w‖ =

∑
j

∑
c |wjc|,

we may end up with some elements of wj,: being zero and some not. To prevent this kind of situation, we
partition the parameter vector into G groups. Now, our objective to minimize is:

J(w) = NLL(w) +

G∑
g=1

λg‖wg‖2 ‖wg‖2 =

√∑
j∈g

w2
j (12.17)

where ‖wg‖2 is the 2-norm of the group weight vector. If the NLL is least squares, this method is called group
lasso. We often would use larger penalty for larger groups which can be enforced by setting λg = λ

√
dg. Also

note if we had used the square of the 2-norm ‖wg‖22 we would have a model equivalent to ridge regression.

39

Ahmad Humayun Machine Learning Notes

By using the square root, we are penalizing the radius of a ball containing the group’s weight vector: the
only way for the radius to be small is if all elements are small. Thus the square root induces group sparsity.
Another way to induce this sparsity would be to use the infinity-norm: ‖wg‖∞ = maxj∈g |wj |.

• Sometimes you not only want the coefficients to be sparse, but also similar to each in its neighborhood. Binary
segmentation is one example. We can use a fused lasso in this case (MLPP 13.5.2). We can model it with
the following objective:

J(w, λ1, λ2) =

N∑
i=1

(yi − wi)2 + λ1

N∑
i=1

|wi|+ λ2

N−1∑
i=1

|wi+1 − wi|︸ ︷︷ ︸
fused lasso penalty

(12.18)

You can generalize this idea beyond chain structures to graph structures G(V,E), where the penalty becomes
of this form:

J(w, λ1, λ2) =
∑
s∈V

(ys − ws)2 + λ1

∑
s∈V
|ws|+ λ2

∑
(s,t)∈E

|ws − wt| (12.19)

This is called the graph-guided fused lasso.

• Although lasso works, it has couple of problems: (1) If a group of variables are highly correlated, LARS
usually selects one variable from them and leaves others in the group out; you can only use group lasso when
you know the grouping structure; (2) in D > N case, lasso can select at most N variables before it saturates;
(3) if N > D and the variables are correlated, it is empirically shown that prediction accuracy ridge is better
than lasso. For these cases elastic net (MLPP 13.5.3) works which is a hybrid between lasso and ridge
regression. In this model, the objective function is:

J(w, λ1, λ2) = ‖y −Xw‖2 + λ1‖w‖22 + λ2‖w‖1 (12.20)

This function is strictly convex (assuming λ2 > 0) so there is a unique global minima even if X is not full
rank. It can be shown that any strictly convex penalty on w will exhibit the grouping effect (where neighbors
have similar weights w). For instance, if two features are exactly equal X:j = X:k, one can show that their
estimates are also equal ŵj ≈ ŵk.

• Even though using Laplace priors gives a convex problem, it does not put enough probability mass near 0,
so it does not sufficiently suppress noise. Plus it does not put enough probability mass on large values, so it
causes shrinkage of relevant coefficients. The solution is to non-convex regularizer/priors (MLPP 13.6). Even
though we cannot reach the global optimum anymore - it empirically performs better than `1 regularization
both in terms of predictive accuracy and in detecting relevant variables.

• A natural non-convex generalization of `1 regularization is called bridge regression (b > 0):

ŵ = NLL(w) + λ
∑
j

|wj |b (12.21)

Unfortunately the objective is not convex of b < 1 and it is not sparsity promoting when b > 1, so `1 is the
tightest convex approximation to `0 norm.

• Lasso has the problem of giving biased estimates. This because a large value of λ not only squashes irrelevant
parameters, but also over-penalizes the relevant ones. The way to solve this is to associate a different penalty
parameter with each parameter. Of course, it is completely infeasible to tune D parameters by cross-validation,
but this poses no problem to the Bayesian. This model is called the hierarchical adaptive lasso (HAL)
(MLPP 13.6.2). Both the predictive accuracy and selection of variables (setting zeros at right places) is better
than lasso. EM for HAL (MLPP 13.6.2.1).

40

Machine Learning Notes Ahmad Humayun

• Sparse Bayesian Learning (SBL) or Automatic Relevance Determination (ARD) (MLPP 13.7)
where we integrate out w (while simultaneously encouraging sparsity) and maximize the marginal likelihood
wrt τ - which can be combined with basis function expansion in a linear model which gives rise to relevance
vector machine (RVM).

• Sparse Coding (MLPP 13.8) is about using sparse priors for unsupervised learning. We discussed ICA before
which is only different from PCA in using a non-Gaussian prior. If we make this prior to be sparsity promoting,
like a Laplace distribution, we will be approximating each observed vector xi as a sparse combination of of the
basis vectors (columns of W); note that the sparsity pattern (controlled by zi) changes from data case to data
case. If we relax the constraint that W is orthogonal, we get a method called sparse coding. In this context
we call the factor loading matrix W a dictionary; each column of which is referred to as an atom. In view
of the sparse representation, it is common for L > D in the case we call the representation overcomplete
(D is the dimensionality of the features and L is the number of features). In sparse coding, the dictionary
can be fixed or learned. If it is fixed, it is common to use a wavelet or DCT basis, since many natural signals
can be well approximated by a small number of such basis functions. However, it is also possible to learn the
dictionary by maximizing the likelihood:

logP(D|W) =

N∑
i=1

log

∫
zi

N (xi|Wzi, σ
2I)P(zi)dz (12.22)

Again, sparse coding puts sparsity promoting priors on the latent factors zi. The equation above is hard to
maximize - we usually solve the following approximation (MLPP 13.8.1):

logP(D|W) ≈
N∑
i=1

max
zi

[
log

∫
zi

N (xi|Wzi, σ
2I)P(zi)

]
(12.23)

If P(zi) is Laplace, then we can rewrite the NLL as:

NLL(W,Z) =

N∑
i=1

1

2
‖xi −Wzi‖22 + λ‖zi‖1 (12.24)

To prevent W from becoming arbitrarily large, it is common to constrain the `2 norm of its columns to be
less than or equal to 1: C , {W ∈ RD×L s.t. wT

j wj ≤ 1}. Then we solve minW∈C, Z∈RN×L NLL(W,Z). For
optimizing it we alternate between optimizing for W (called the analysis phase), and optimizing for Z (called
the synthesis phase) - hence the whole procedure is called the analysis-synthesis loop (MLPP 13.8.1). For
fixed zi, the optimization over W is simple least squares problem. For fixed W, the optimization over Z is
identical to the lasso problem.

• A similar model is non-negative matrix factorization (NMF) (MLPP 13.8.1):

min
W∈C, Z∈RN×L

1

2

N∑
i=1

‖xi −Wzi‖22 s.t. W ≥ 0, zi ≥ 0 (12.25)

Note here we are not tuning any hyper-parameters. The intuition behind this constraint is that the learned
dictionary is maybe more interpretable if it is a positive sum of positive parts, rather than sparse sum of atoms
that may be positive or negative. Combining NMF with sparse prior on latent factors is called non-negative
sparse coding.

• We can also impose sparsity constraint on both the factors zi, and the dictionary W. We call this sparse
matrix factorization (MLPP 13.8.1). To ensure strict convexity, we can use an elastic net type penalty on
the weights:

min
W, Z

1

2

N∑
i=1

‖xi −Wzi‖22 + λ‖zi‖1 s.t. ‖wj‖22 + γ‖wj‖1 ≤ 1 (12.26)

41

Ahmad Humayun Machine Learning Notes

• Let’s say you are given, y ∈ RM which is the low dimensional projection of x ∈ RD, i.e. M � D. Let’s say
we know that y = Rx + ε, where R ∈ RM×D is called the sensing matrix, and ε is noise term, usually
Gaussian. We assume that R is known, and it corresponds to different linear projections of x. Our goal
is to infer P(x|y,R). How can we hope to recover all of x if we do not measure all of x? The answer is:
we can use Bayesian inference with an appropriate prior, that exploits the fact that natural signals can be
expressed as a weighted combination of a small number of suitably chosen basis functions. That is, we assume
x = Wz, where z has a sparse prior, and W is a suitable dictionary. This is called compressed sensing or
compressive sensing (MLPP 13.8.3).

13 Kernels

• When the data cannot be represented by a fixed-size feature vector, what to do? One approach is to assume
that you have a way of measuring the similarity between the objects, that doesn’t require them to be prepro-
cessed into feature vectors. Let κ(x,x′) ≥ 0 be some measure of similarity between objects x, x′ ∈ X , where
X could be any abstract space; we call κ a kernel function which is real valued function (MLPP 14.1).
Usually it is symmetric, κ(x,x′) = κ(x′,x), and non-negative. It can be interpreted as a similarity function
but it is not a requirement. Some kernels:

– squared exponential kernel (SE kernel) or Gaussian kernel (MLPP 14.2.1):

κ(x,x′) = exp

(
−1

2
(x− x′)TΣ−1(x− x′)

)
(13.1)

If Σ is diagonal we can write:

κ(x,x′) = exp

−1

2

D∑
j=1

1

σ2
j

(xj − x′j)2

 (13.2)

We can interpret σj as defining the characteristic length scale of dimension j. If σj = ∞ the
corresponding dimension is ignored; hence it is an ARD kernel 12. If Σ is spherical, we get the
isotropic kernel:

κ(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
(13.3)

Here σ2 is known as the bandwidth. Kernel in Equation 13.3 is an example of a radial basis function
(RBF) kernel, which are functions of ‖x− x′‖.

– (MLPP 14.2.2) If we have a bag of words representation of two documents xi and x′i - where xij tells
how many times words j occurs in document i. We can use the cosine similarity in this case (which is
just measuring the cosine angle between two vectors):

κ(xi,x
′
i) =

xT
i x′i

‖xi‖2‖x′i‖2
(13.4)

To avoid artificial boosting from words like “the”, “and”, and when discriminative words are used in
bursts, we can replace the word count with a new feature vector called term frequency inverse
document frequency (TF-IDF). Term frequency reduces the impact of words that occur many times
within one document tf(xij) , log(1 + xij). Inverse document frequency measures after how many

document a word occurs on average, idf(j) , log N
1+

∑N
i=1 I(xij>0)

. Here N is number of total documents.

The TF-IDF measure is as follows:

tf-idf(xi) , [tf(xij) × idf(j)]
V
j=1 (13.5)

tf-idf(xi) can be replace x in Equation 13.4 to give better results.

42

Machine Learning Notes Ahmad Humayun

– If the Gram matrix:

K =

κ(x1,x1) · · · κ(x1,xN)
...

. . .
...

κ(xN ,x1) · · · κ(xN ,xN)

 (13.6)

is positive definite for any set of inputs {xi}Ni=1, we call such a kernel κ a mercer kernel or positive
definite kernel (MLPP 14.2.3). Both the Gaussian kernel or the cosine kernel are mercer kernels. The
use of this comes from eigenvector decomposition of K = UTΛU, where Λ is a diagonal matrix of the

eigenvalues λi > 0. Considering an element of K can be computed as kij = (Λ
1
2 U:,i)

T(Λ
1
2 U:,j), we can

write kij = φ(xi)
Tφ(xj). Of course, φ(xi) = Λ

1
2 U:,i. Hence, we see that the kernel can be computed as

an inner product of some feature vectors that are implicitly defined by the eigenvectors of K. In general
if the kernel is Mercer, then there exists a function φ mapping vvx ∈ X ∈ RD such that:

κ(x,x′) = φ(x)Tφ(x′) (13.7)

where φ depends on the eigen functions of κ (so D could be potentially an infinite dimensional space).
Polynomial kernel and Sigmoid kernel explained in (MLPP 14.2.3).

– Deriving the feature vector implied by a kernel is in general quite difficult, and only possible if the kernel
is Mercer. However, deriving a kernel from a feature vector is easy: we just use

κ(x,x′) = φ(x)Tφ(x′) = 〈φ(x), φ(x′)〉 (13.8)

If φ(x) = x, we get the linear kernel (MLPP 14.2.4) defined by: κ(x,x′) = xTx′. This is useful when
the data is already high dimensional, and if the features individually are informative. In such cases the
decision boundary is likely to be representable as a linear combination of the original features, so it is
not necessary to work in some other feature space.

– Matern kernel (MLPP 14.2.5) are commonly used for Gaussian Process Regression:

κ(r) =
21−ν

Γ(ν)

(
r
√

2ν

`

)ν
Kν

(
r
√

2ν

`

)
(13.9)

where r = ‖x − x′‖, ν > 0, ` > 0 and Kν is modified Bessel function. As ν → ∞, this approaches the
SE kernel. If ν = 1

2 the kernel simplifies to:

κ(r) = exp(−r/`) (13.10)

If D = 1, and we use this kernel to define a Gaussian process, we get the Ornstein-Uhlenbeck process,
which describes the velocity of a particle undergoing Brownian motion.

– String kernels (MLPP 14.2.6) are the kind which describe the similarity of two strings. If you have
two strings x and x′. Each string is composed of sub-strings s, for instance, x = usv. Now let us denote
φs(x) be the number of times sub-string s occurs in string x. The kernel is defined as:

κ(x,x′) =
∑
s∈A∗

wsφ(x)φ(x′) (13.11)

where ws ≥ 0 and A∗ is the set of all strings of any length. This is a Mercer kernel and can be computed
in O(|x|+ |x′|) time, for certain weights {ws}. If we set ws = 0 for |s| > 1 we get a bag-of-characters
kernel. If s needs to be surrounded by spaces then we get a bag-of-words kernel. If ws = 0 when
|s| 6= k, we get the k-spectrum kernel.

43

Ahmad Humayun Machine Learning Notes

– In computer vision we can generate a bag-of-words representation of an image using some feature de-
scriptor like SIFT - generate SIFT descriptors around some features detected; quantize the feature space
(but they maybe variable-sized bags); map each feature set to a multi-resolution histogram; compare
using weighted histogram intersection. This is called the Pyramid Match Kernel (MLPP 14.2.7).
This is a Mercer kernel.

– Suppose we have a probabilistic generative model of feature vectors P(x|θ) (MLPP 14.2.8). We can
make kernels from this which are good for discriminative tasks. One approach is to use the Probability
Product Kernel:

κ(xi,xj) =

∫
P(x|xi)ρP(x|xj)ρdx (13.12)

where ρ > 0 and P(x|xi) is approximated by P(x|θ̂(xi)), where θ̂(xi)) is a parameter estimate using a
single data vector. This makes sense because the fitted model is only being used to see how similar two
objects are. So if we fit a model to xi and the model thinks xj is likely, that means xi and xj are similar.
for instance if P(x|θ) = N (µ, σ2I), where σ2 is fixed, ρ = 1, and we use µ̂(xi) = xi and µ̂(xj) = xj ,
then we find:

κ(xi,xj) =
1

(4πσ2)D/2
exp

(
− 1

4σ2
‖xi − xj‖2

)
(13.13)

where is up to constant factor the RBF kernel. This technique works even if the sequences are of
real-valued vectors, unlike the string kernel.

– A more efficient way to use a generative model for a kernel is to use Fisher kernel:

κ(x,x′) = s(x)TI−1s(x′) (13.14)

where s is the gradient of the log likelihood, or score function, evaluated at the MLE θ̂; and I is the
Fisher information matrix:

s(x) , ∇θ logP(x|θ) |θ̂, I = −∇2 logP(x|θ) |θ̂ (13.15)

Here θ̂ is a function of all the data, so similarity of x and x′ is computed in the context of all data as
well. Note, that we only have to fit one model. The intuition behind this kernel is that the direction
in the parameter space in which x would like the parameters to move (from θ̂) so as maximize its own
likelihood, is similar to the x′’s direction, with respect to the geometry encoded by the curvature of the
likelihood function.

• Given all these kernels how can they be used for classification or regression. One way is to use a kernel
machine (MLPP 14.3.1) which is a GLM where the input is of the form:

φ(x) = [κ(x,µ1), . . . , κ(x,µK)] (13.16)

where µk ∈ X are a set of K centroids. This is called a kernelized feature vector - here we don’t need to
necessarily use Mercer kernels. If κ is an RBF kernel, then this is called an RBF network. One way to use
this in logistic regression would be to define P(y|x,θ) = Ber(wTφ(x)). This provides a simple way to define
a non-linear decision boundary. For linear regression, you can define P(y|x,θ) = N (wTφ, σ2)

• The key problem with kernel machines is choosing the centroids µk. We cannot uniformly place centroids
in the whole D dimensional because of the curse of dimensionality. Another way is to assign a prototype after
clustering the space - but the problem is that regions of space that have high density are not necessarily the
ones where the prototypes are most useful in representing the output (clustering is unsupervised and might

44

Machine Learning Notes Ahmad Humayun

not be useful for prediction) - plus we need to pick then number of cluster centers. One approach is to make
each data point as a prototype:

φ(x) = [κ(x,x1), . . . , κ(x,xN)] (13.17)

Now we have D = N , hence we have as many parameters as data points. However we can use any of the
sparsity promoting priors for w to efficiently selecting a subset of the training exemplars. We call this sparse
vector machines (MLPP 14.3.2). We can use `1 regularization, and this would be called `1-regularized
vector machine (L1VM). If we don’t want sparsity, we can use `2 regularization, and this would be called
`2-regularized vector machine (L2VM). We can get greater sparsity by using ARD/SBL, resulting in
a method called Relevance Vector Machine (RVM). Rather than using a sparsity promoting prior, we
can essentially modify the likelihood term (which is un-natural from Bayesian stand-point), and this method
is called Support Vector Machine (SVM). RVM are the sparsest of them all, and the fastest to train
because you can fit the parameters using empirical Bayes - which only requires fitting a single model.

• Rather than defining our feature vector in terms of kernels, φ(x) = [κ(x,x1), . . . , κ(x,xN)], we can instead
work with the original feature vectors x, but modify the algorithm so that it replaces all inner products of the
form 〈x,x′〉 with a call to the kernel function, κ(x,x′). This is called the kernel trick (MLPP 14.4). The
general idea is that, if we have an algorithm formulated in such a way that the input vector x enters only in
the form of scalar products, then we can replace that scalar product with some other choice of kernel (PRML
6 intro). For instance if we had an algorithm with the term 〈x,x′〉2, where x ∈ R2, we can apply the kernel
trick as follows:

〈x,x′〉2 = (x1x
′
1 + x2x

′
2)2

= x2
1x
′2
1 + x2

2x
′2
2 + 2x1x

′
1x2x

′
2

=
〈

(x2
1, x2

2,
√

2x1x2), (x′21 , x′22 ,
√

2x′1x
′
2)
〉

(13.18)

κ(x,x′) = 〈φ(x), φ(x′)〉 (13.19)

For this trick to work the kernel needs to be a Mercer kernel.

• In Kernelized nearest neighbor classification (MLPP 14.4.1), if you are working with a 1NN classifier,
we just need to compute the Euclidean distance of a test vector to all training points, find the closest one,
and find its label:

‖xi − xi′‖22 = 〈xi,xi〉+ 〈xi′ ,xi′〉 − 2〈xi,xi′〉 (13.20)

• At times K-means is not appropriate to use Euclidean distance to measure dissimilarity for structured objects.
We move to K-medoids algorithm where the difference is that each center is a data vector chosen from the
data. This helps us to deal with integers rather than objects. For finding centroids we just look for the data
point which minimizes the sum of distances to all other points in that cluster:

mk = arg min
i : zi=k

∑
i′ : zi′=k, i 6=i′

d(i, i′) (13.21)

Here zi is the cluster membership for point i. Also d(i, i′) , ‖xi − xi′‖22. This method can be modified to a
classifier, by computing the nearest medoid for each class. This is known as nearest medoid classification.
The algorithm can be kernelized by using Equation 13.20 to replace the distance d(i, i′) (MLPP 14.4.2).

• Given X, the N ×D design matrix, in ridge regression we want to minimize:

J(w) = (y −Xw)T(y −Xw) + λ‖w‖2 (13.22)

45

Ahmad Humayun Machine Learning Notes

We start by using the Gram matrix K = XXT. If we set α , (K + λIN)−1y, we can have:

w = XTα =

N∑
i=1

αixi (13.23)

Hence, this tells us that the solution vector is just a linear sum of N training vectors. We can use this to
create Kernelized ridge regression (MLPP 14.4.3). When we plug this in at test time to compute the
predictive mean, we get:

f̂(x) = wTx =

N∑
i=1

αix
T
i x =

N∑
i=1

αiκ(x,xi) (13.24)

• PCA requires finding the eigenvectors of the sample covariance matrix S = 1
N

∑N
i=1 xix

T
i = 1

NXTX. However,
we can also compute PCA by finding the eigenvectors of the inner product matrix XXT. This allows us to
produce a nonlinear embedding, using the kernel trick, a method known as Kernel PCA (kPCA) (MLPP
14.4.4). Recall that when use K = XXT, the Mercer’s theorem implies some underlying feature space, so
we are implicitly replacing xi with φ(xi). Given that, now, Φ is the design matrix, Sφ = 1

N

∑
i φiφ

T
i is

the corresponding covariance matrix in the feature space. Whereas linear PCA is limited to using L ≤ D
components, in kPCA, we can use up to N components, since the rank of Φ is N × D∗, where D∗ is the
(potentially infinite) dimensionality of the embedded feature vectors.

• As discussing before one way derive a sparse kernel machine is to use a GLM with kernel basis functions, plus
a sparsity-promoting prior. An alternative is to change the objective function from negative log likelihood
to some other loss function. In the ridge regression case, we know that the solution to this has the form
ŵ = (XTX + λI)−1XTy, and plug-in predictions take the form ŵ0 + ŵTx (given that ŷi = wTxi + w0).
Like in kPCA, we can rewrite these equations in a way that only involves inner products of the form xTx′,
which we can replace by calls to a kernel function, κ(x,x′). This is kernelized, but not sparse. If we replace
the quadratic / log-loss with some other loss function, we can ensure that the solution is sparse, so that the
predictions only depend on a subset of the training data, known as support vectors (MLPP 14.5). This
combination of the kernel trick plus a modified loss function is known as the Support Vector Machine
(SVM).

– SVMs are un-natural from a probabilistic stand point: (1) They encode sparsity in the loss function
rather than in the prior; (2) they encode kernels by using an algorithmic trick rather than being an
explicit part of the model; (3) SVMs do not give probabilistic outputs.

– SVMs for Regression (MLPP 14.5.1): One problem with kernelized ridge regression is that the solution
vector w depends on all the training inputs. SVM can make a more sparse estimate. (Vapnik 1997)
proposed a variant of huber loss function which is called epsilon insensitive loss function:

Lε(y, ŷ) ,

{
0 if |y − ŷ| < ε

|y − ŷ| − ε otherwise
(13.25)

This means that any prediction inside the ε-tube around the true value will not be penalized. In Figure 9a
points in blue are penalized and points in yellow are not. The corresponding objective function is usually
written in the following form:

J(w) = C

N∑
i=1

Lε(yi, ŷi) +
1

2
‖w‖2 (13.26)

where ŷi = f(xi) = wTxi + w0 and C = 1/λ is a regularization constant. The objective is convex
but not differentiable, because of the absolute value function in the loss term. Nevertheless it can be

46

Machine Learning Notes Ahmad Humayun

(a) ε loss

Figure 9

solved by standard quadratic program. The optimal solution has the form w =
∑
i αixi where αi ≥ 0.

Furthermore, it turns out the α vector is sparse, because we don’t care about errors which are within
the ε margin. The xi for which αi > 0 are called support vectors; these are the points for which the
errors lie on or outside the tube. Once the model is trained we can make predictions by:

ŷ(x = ŵ0 + ŵTx

= ŵ0 +
∑
i

αix
T
i x

= ŵ0 +
∑
i

αiκ(xi,x) (13.27)

– SVMs for Classification (MLPP 14.5.2): We use a hinge loss where, like before, η = f(x) = wTx+w0

and the labels are y ∈ {−1,+1}:

Lhinge(y, η) = max(0, 1− yη) = (1− yη)+ (13.28)

Here η = f(x) is our confidence in choosing label y = 1; however, it need not have any probabilistic
meaning. The overall objective looks like:

min
w,w0

1

2
‖w‖2 + C

N∑
i=1

(1− yif(xi))+ (13.29)

This can be solved via a quadratic program. One can show the solution is of the form ŵ =
∑
i αixi

where αi = λiyi and where α is sparse because of the hinge loss. The xi for which αi > 0 are called
support vectors; these are the points which have been incorrectly classified or are classified correctly but
are on the inside of the margin. At test time, prediction is done using:

ŷ(x) = sgn
(
ŵ0 + ŵTx

)
= sgn

(
ŵ0 +

N∑
i=1

αiκ(xi,x)

)
(13.30)

This takes O(sD) time to compute, where s ≤ N is the number of support vectors. This depends on the
sparsity level and hence on the regularizer C.

47

Ahmad Humayun Machine Learning Notes

– Consider a point x in the induced space: x = x⊥ + r w
‖w‖ where r is the distance of x from the decision

boundary whose normal vector is w and x⊥ is the orthogonal projection of x onto this boundary. Hence:

f(x) = wTx + w0 = (wTx⊥ + w0) + r
wTw

‖w‖
= (wTx⊥ + w0) + r‖w‖ (13.31)

Since f(x⊥) = 0, so f(x) = r‖w‖ and r = f(x)
‖w‖ . We would like r to be as large as possible. There might

be many lines that separate the training data (especially in higher dimensions), but intuitively the best
one to pick would be the one that maximizes the margin. In addition, to ensure each point is on the

right side of the boundary we say f(xiyi > 0. So our objective is maxw,w0
minNi=1

yi(w
Txi+w0)
‖w‖ . Since

there is a scale ambiguity, we can say yif(xi) = 1 for the point that is closest to the decision boundary.
Hence yif(xi) ≥ 1 for all i’s. Thus the objective becomes:

min
w,w0

1

2
‖w‖2 s.t. yi(w

Txi + w0) ≥ 1, i = 1 : N (13.32)

This constraint is makes SVM a large margin classifier (MLPP 14.5.2.2). Now, if the data is not
linearly separable (even after the kernel trick), there will be no feasible solution with the constraint
yif(xi) ≥ 1 for all i’s. We introduce a slack variable ξi ≥ 0, which would be (1) ξi = 0 if the point is on
or across the correct margin boundary; (2) 0 < ξi ≤ 1 the point lies inside the margin even though its
on the correct side of the boundary; (3) ξi > 1 if the point is on the wrong side of the boundary. We put
these soft margin constraints in the objective, transforming it to:

min
w,w0

1

2
‖w‖2 + C

N∑
i=1

ξi s.t. ξi ≥ 0, yi(w
Txi + w0) ≥ 1− ξi, i = 1 : N (13.33)

Optimizing this is equivalent to minimizing the objective in Equation 13.29. The parameter C is a
regularization parameter that controls the errors we are willing to tolerate in the training set. We can
set it to C = 1/(νN) where 0 < ν ≤ 1 controls the fraction of mis-classified points that we allow during
the training phase. This is class a ν-SVM classifier, where ν can be set from cross-validation.

– An SVM classifier gives hard-labeling ŷ(x) = sign(f(x)). However, we often want ta measure of confi-
dence in our prediction (MLPP 14.5.2.3). One heuristic approach is to interpret f(x) as the log-odds ratio,

log P(y=1|x)
P(y=0|x) . We can then convert the output of an SVM to a probability using: P(y = 1|x,θ) = sigm(af(x)+b),

where a, b can be estimated by maximum likelihood on a separate validation set. However, the resulting
probabilities are not particularly well calibrated, since there is nothing in the SVM training process that
justifies interpreting f(x) as a log-odds ratio.

– SVM for multi-class classification (MLPP 14.5.2.4): This can be hard because the output of the
classifier is not on a calibrated scale, and would be difficult to compare to each other. When we train C
binary classifiers for one-vs-all, where the output of each classifier is fc(x) (being +ve for class c), but this
results in regions which are ambiguously labeled. A common alternative i to pick ŷ(x) = arg maxc fc(x),
but this technique doesn’t work either because the values might not be comparable across classifiers.
Also there is a problem of class imbalance because when training one-vs-all classifiers, usually you
have much more samples in the negative case. Another approach is one-vs-one (also called all pairs),
in which we train C(C − 1)/2 classifiers to discriminate all pairs fc,c′ . We then classify a point into the
class which has the highest number of votes. However this approach can also result in ambiguities. Most
of these problems are a direct result of having no probabilistic interpretation of the SVM output - an
alternative is to use a kernel inside multi-class classifier like RVM or L1VM.

– Choosing the right C for SVM is done via cross-validation (MLPP 14.5.3). If you are using RBF kernel,
the kernel parameter γ = 1

2σ2 is tightly coupled with C in the sense that if you want to use a narrow
kernel, we need heavy regularization, hence a small C.

48

Machine Learning Notes Ahmad Humayun

– In summary SVMs use three ingredients: the kernel trick, sparsity, and the large margin principle (MLPP
14.5.4). The kernel trick is necessary to avoid underfitting (since you can better fit the model sometimes
in a higher dimensional space). Whereas sparsity and large margin principle avoid overfitting (and both
arise from the use of the hinge loss function).

– Probabilistic interpretation of the hinge loss can be achieved by using a pseudo-likelihood which can be
represented as a Gaussian scale mixture (MLPP 14.5.5).

• Comparisons of different discriminative kernel methods (L1VM, L2VM, RVM, SVM, Guassian Processes
(GPs)) (MLPP 14.6): (1) One question is how does each method compare on the objective J(w) = − logP(D|w)−logP(w).
For L2VM, L1VM, and SVM this objective is convex - for RVM it is not. GPs are Bayesian methods that
do not perform any parameter estimation. (2) For optimizing the kernel parameters (such as the bandwidth
of the RBF kernel, and the level of regularization) Gaussian prior method like L2VM, RVM and GPs use
gradient based optimizers to maximize the marginal likelihood; for SVM and L1VM we use the slower cross-
validation method; (3) L1VM, RVM, and SVM are all spase kernel methods, and GPs and L2VM use all
training examples i.e. they are not sparse. The advantage of sparsity is shorter test time and sometimes
improved accuracy. (4) All methods give a probabilistic output except SVM. (5) All methods except SVMs
are naturally multiclass, by using a multinoulli output instead of Bernoulli. (6) SVMs and GPs are the only
ones to require a Mercer kernel. Conclusion: If speed matters use an RVM, but if well-calibrated probabilistic
output matters (for instance in active learning or control problems) use a GP. SVMs are sensible for structured
output case, where likelihood based methods can be slow.

• A different kind of kernel known as a smoothing kernel can be used for unsupervised non-parametric density
estimation P(x), as well as creating generative classifiers for classification and regression by making models
of the form P(y,x) (MLPP 14.7). A smoothing kernel (MLPP 14.7.1) satisfies these properties:∫

κ(x)dx = 1,

∫
xκ(x)dx = 0,

∫
x2κ(x)dx > 0 (13.34)

A simple example is a Gaussian kernel: κ(x) , 1√
2π
e−x

2/2. We control the width of the kernel by a

bandwidth parameter h: κh(x) , 1
hκ
(
x
h

)
. This can be generalized to vector values as κh(x) = κh(‖h‖). In

the case of the Gaussian kernel this becomes:

κh(x) =
1

hD(2π)D/2

D∏
j=1

exp

(
−
x2
j

2h2

)
(13.35)

Gaussian kernels have unbounded support. As an alternative with compact support is Epanechnikov kernel:
κ(x) , 3

4 (1 − x2)I(|x| ≤ 1). Compact support is important for efficiency reasons, since one can use fast NN
methods to evaluate the density. Unlike Epanechnikov kernel, tri-cube kernel has two continuous derivative
at support boundary: κ(x) , 70

81 (1− |x|3)3I(|x| ≤ 1). We also have the boxcar kernel: κ(x) , I(|x| ≤ 1).

• Unlike parametric density estimator (like GMM), in Kernel density estimation (KDE) (MLPP 14.7.2)
you don’t need to specify K. All you need to do is allocate one cluster per data point, so µi = xi. In this
case the model becomes:

P(x|D) =
1

N

N∑
i=1

κh(x− xi) =
1

N

N∑
i=1

N (x|xi, σ2I) (13.36)

This is called Parzen window density estimator or kernel density estimator (KDE), and is simple
non-parametric density model. The advantage is that there is no model fitting required (except the bandwidth
which can be set by cross-validation). The disadvantage is that model takes a lot of memory to store and lot
of time to evaluate. When using a boxcar kernel, it is like counting how many data points land within an
interval of size h around xi. The usual way to pick h is to minimize an estimate (such as cross-validation) of
the frequentist risk.

49

Ahmad Humayun Machine Learning Notes

• KDE for KNN (MLPP 14.7.3): Instead of fixing a bandwidth h, we allow the bandwidth or volume to be
different for each data point. Specifically we will grow a volume around x until we encounter K data points,
regardless of their class label. Given V (x) is volume required, Nc(x) be examples of class c in that volumes,
and Nc be the total number of examples of class c, the likelihood becomes:

P(x|y = c,D) =
Nc(x)

NcV (x)
(13.37)

The class posterior can be computed to:

P(y = c|x,D) =
Nc(x)

K
(13.38)

• Kernel Regression (MLPP 14.7.4), where the goal is to compute the conditional expectation:

f(x) = E[y|x] =

∫
yP(y|x)dy =

∫
yP(x, y)dy∫
P(x, y)dy

(13.39)

We can use KDE to approximate the joint density P(x, y) as follows:

P(x, y) ≈ 1

N

N∑
i=1

κh(x− xi)κh(y − yi) (13.40)

We can use this to rewrite the conditional expectation, and the method is called kernel regression / kernel
smoothing / Nadaraya-Watson model (MLPP 14.7.4):

f(x) =

N∑
i=1

wi(x)yi wi(x) ,
κh(x− xi)∑N
i′=1 κh(x− xi′)

(13.41)

• Locally weighted regression (MLPP 14.7.5).

14 Gaussian Processes

• In supervised learning, we observe some inputs xi and some outputs yi. We assume that yi = f(xi) for some
unknown function f , possibly corrupted by noise. Up until now we have focused on parametric representations
for the function f so that instead of inferring P(f |X,y), we infer P(θ|X,y). Gaussian processes (MLPP
15.1) is a way to perform Bayesian inference over functions themselves. Gaussian process defines a prior over
functions, which can be converted to a posterior over functions after observing some data. Although it might
seem difficult to define a distribution over a function, it turns out it is just a matter of defining a distribu-
tion over the function’s values at a finite, but arbitrary set of points, say x1, . . . ,xN . A GP assumes that
P(f(x1), . . . , f(xN)) is jointly Gaussian, with some mean µ(x) and covariance Σ(x) given by Σij = κ(xi,xj),
where κ is a positive definite kernel function. The key idea is that if the kernel thinks that xi and xj are
similar, then we expect the output of the function at those points to be similar too. A Gaussian process is a
generalization of the Gaussian probability distribution. Whereas a probability distribution describes random
variables which are scalars or vectors (for multivariate distributions), a stochastic process governs the prop-
erties of functions (Rasmussen and Williams 2006 1). If you ask only for the properties of the function at a
finite number of points, then inference in the Gaussian process will give you the same answer if you ignore
the infinitely many other points, as if you would have taken them all into account! The key advantage of GP
over L1VM, RVM, and SVM is well calibrated probabilistic output.

1http://www.gaussianprocess.org/gpml/chapters/

50

http://www.gaussianprocess.org/gpml/chapters/

Machine Learning Notes Ahmad Humayun

• A gaussian process is a collection of random variables, any finite number of which have a joint Gaussian
distribution. A GP is completely specified by its mean function m(x) and covariance function κ(x,x′), where
we consider a real process f(x):

m(x) = E[f(x)] (14.1)

κ(x,x′) = E
[
(f(x)−m(x))(f(x′)−m(x′))T

]
(14.2)

and we will write the Gaussian Process as:

f(x) ∼ GP(m(x), κ(x,x′)) (14.3)

Usually for notational simplicity we will take the mean function to be 0. In our case the random variables
represent the value of the function f(x) at location x. We require that κ should be positive definite kernel.
For any finite set of points, this process defines a joint Gaussian:

P(f |X) = N (f |µ,K) (14.4)

where Kij = κ(xi,xj) and µ = (m(x1), . . . ,m(xN)).

• Suppose we observe training data set D = {(xi, fi), i = 1 : N} where fi = f(xi) is the noise free observation
of the function evaluated at xi Given a test set X∗ of size N∗×D, we want to predict the function outputs f∗.
If we ask GP to predict f(x) for a value it has already seen, we want the GP to return the answer f(x) with
no uncertainty. In other words, it should act as an interpolator of the training data. This will only happen if
we assume the observations are noiseless (MLPP 15.2.1). By definition of the GP, the joint distribution has
the following form:(

f
f∗

)
∼ N

((
µ
µ∗

)
,

(
K K∗
KT
∗ K∗∗

))
(14.5)

where K = κ(X,X) is N × N , K∗ = κ(X,X∗) is N × N∗, and K∗∗ = κ(X∗,X∗) is N∗ × N∗. By rules of
conditioning of a Gaussian, the posterior has the following form:

P(f∗|X∗,X, f) = N (f∗|µ∗,Σ∗) (14.6)

µ∗ = µ(X∗) + KT
∗K
−1(f − µ(X)) (14.7)

Σ∗ = K∗∗ −KT
∗K
−1K∗ (14.8)

The model would perfectly interpolate the training data, and the predictive uncertainty increases as we move
further away from the observed data.

• Predictions using noisy observations (MLPP 15.2.2). Effect of kernel parameters (MLPP 15.2.3).

• Rather than enumerating kernel parameters on a grid and then evaluating them one by one, we can use
empirical Bayes approach, which will allow us to use continuous optimization approaches in order to maximize
the marginal likelihood (MLPP 15.2.4):

P(y|X) =

∫
P(y|f ,X)P(f |X)df (14.9)

You can also compute the posterior of the hyper-parameters rather than just a point estimate (MLPP 15.2.4.2).
Another approach is multiple kernel learning (MLPP 15.2.4.3), where rather than learning the kernel
parameters, we consider multiple base kernels where the final kernel is a weighted sum of the base kernels:
κ(x,x′) =

∑
j wjκj(x,x

′). Then the learning task is to optimize the weights w.

51

Ahmad Humayun Machine Learning Notes

• If GPs in the GLM setting (MLPP 15.3), we can employ GPs for classification. As with Bayesian logistic
regression, the main difficulty is that the Gaussian prior is not conjugate to the bernoulli/multinoulli likelihood.
There are several approximations one can adopt, but the simplest and fastest is the Gaussian approximation
(MLPP 15.3). For binary classification, at convergence the Gaussian approximation of the posterior takes the
form:

P(f |X,y) ≈ N
(
f̂ , (K−1 + W)−1

)
(14.10)

where W , −∇2 logP(y|f). The posterior predictive (MLPP 15.3.1.2) takes the form:

P(f∗|x∗,X,y) = N (E[f∗], var[f∗]) (14.11)

To convert this into a predictive distribution for binary responses, we use:

π∗ = P(y∗ = 1|x∗,X,y) ≈
∫

sigm(f∗)P(f∗|x∗,X,y)df∗ (14.12)

• GPs for multi-class classification (MLPP 15.3.2). GPs for Poisson regression (MLPP 15.3.3) where the Matern
kernel is used.

• Bayesian linear regression is equivalent to a GP with covariance function κ(x,x′) = xTΣx′ (MLPP 15.4.1).

• SVM comparison to GPs (MLPP 15.4.3): Note that SVM has the following objective function for binary
classification:

J(w) =
1

2
‖w‖2 + C

N∑
i=1

(1− yifi)+ (14.13)

where fi , f(xi). Since the optimal solution has the form w =
∑
i αixi, so ‖w‖2 =

∑
i,j αiαjx

T
i xj . Ker-

nelizing we get ‖w‖2 = αKα. If we absorb the ŵ0 term into one of the kernels, we have f = Kα, so
‖w‖2 = fTK−1f . Hence the SVM objective can be written as:

J(f) =
1

2
fTf + C

N∑
i=1

(1− yifi)+ (14.14)

Compare this to the MAP estimation for GP classifier:

J(f) =
1

2
fTf −

N∑
i=1

logP(yi|fi) (14.15)

Although there is no conversion from SVM to the GP classifier because the hinge loss has no conversion to
the logistic loss, because hinge loss is strictly 0 for errors larger 1 - which gives SVM sparse solutions.

• As discussed before kernel PCA is applying kernel trick to regular PCA. Gaussian process latent variable
model (GP-LVM) is different way to combine kernels with probabilistic PCA (MLPP 15.5).

• The principal drawback of GPs is that it takes O(N3) time to use. This is because of the need to invert the
N×N kernel matrix K. This is a key limitation of GPs on being used on larger datasets. Some approximation
methods have been devised - see (MLPP 15.6).

52

Machine Learning Notes Ahmad Humayun

15 Adaptive Basis Function Models

• In the previous two sections we talked about kernel methods to create non-linear models for regression and
classification. The prediction takes the form f(x) = wTφ(x), where we define:

φ(x) = [κ(x,µ1), . . . , κ(x,µN)] (15.1)

and where µk are either all the training data or some subset. Models of this form essentially perform a form of
template matching, whereby they compare the input x to the stored prototypes µk. Although this can work
well, it relies on having a good kernel function to measure the similarity between data vectors. Sometimes
coming a good kernel function is quite difficult. In this section we work with an alternative approach which
dispenses kernels altogether. Rather we try to learn useful features φ(x) directly from input data. That is
we will create adaptive basis functions (MLPP 16.1) which have the form:

f(x) = w0 +

M∑
m=1

wmφm(x) (15.2)

where φm(x) is the m’th basis function which is learned from data. The basis functions are usually para-
metric, so we can write φm(x) = φ(x; vm), where vm are the parameters of the basis functions. We will use
θ = (w0,w1:M , {vm}Mm=1) to denote all the parameters in the model. Note that the model is no longer linear
in parameters anymore, hence we can only compute locally optimal MLE or MAP estimate of θ.

• Classification and Regression Trees (CART) or decision trees (MLPP 16.2.1) are defined by recursively
partitioning the input space, and defining a local model in each resulting regions of input space. This can
be conveniently represented as a tree, with one leaf per region. CART essentially divides the feature space
through axis parallel/aligned splits (since splits are based on a single feature such as xi > τm). We can
associate the mean response with each of these regions, resulting in the piecewise constant surface:

f(x) = E[y|x] =

M∑
m=1

wmI(x ∈ Rm) =

M∑
m

wmφ(x; vm) (15.3)

where Rm is the m’th region, wm is the mean response in this region, and vm encodes the choice of variable to
split on, and the threshold value, on the path from the root to the m’th leaf. This makes CART an adaptive
basis function, where the basis function define the regions, and the weights specify the response value of each
region.

• We can generalize CART to classification where rather than storing the mean response, we store the distri-
bution class labels in each leaf.

• Growing the optimal tree is NP-complete, so it is common to adopt greedy procedures (MLPP 16.2.2). When
learning the tree, the question at each node is what feature j∗ and what threshold t∗ to use to split the space.
This can be specified as:

(j∗, t∗) = arg min
j∈{1,...,D}

min
t∈Tj

cost({xi,yi : xij ≤ t}) + cost({xi,yi : xij > t}) (15.4)

where xij is the j’th feature on the i’th data point. We suppose that xij is real valued or ordinal, so it makes
sense thresholding against a numerical value t. The set Tj can be constructed by sorting the current set of
inputs {xij}∀i. In case of categorical inputs, the most common approach is to consider splits of the form
xij = ck and xij 6= ck for each possible class label ck.

• Although we can have non-binary trees (multi-way splits), this would result in data fragmentation, meaning
too little data might fall into each subtree, resulting in overfitting.

53

Ahmad Humayun Machine Learning Notes

• There are many possible stopping criteria: (1) Is the reduction in cost too small; (2) has the tree exceeded the
maximum desired depth; (3) is the distribution of the response in either DL or DR sufficiently homogeneous
(in case all the labels are the same, in which case the distribution is pure); (4) The number of samples is too
less in either DL or DR.

• For regression cost (MLPP 16.2.2.1), one can simply use the squared error from the mean:

cost(D) =
∑
i∈D

(yi − ȳ)2, ȳ =
1

|D|
∑
i∈D

yi (15.5)

• For classification cost (MLPP 16.2.2) there are several options. Given all the data points D at the right or
left split, we first compute the fraction of data points in each class (multinoulli model) π̂c = 1

|D|
∑
i∈D I(yi = c):

– Misclassification rate: We define the most probable class label as ŷc = arg maxc π̂c. The corresponding
error rate is then: 1

|D|
∑
i∈D I(yi 6= ŷ) = 1− π̂ŷ.

– Entropy: Minimizing the entropy is equivalent to maximizing the information gain between test Xj < t
and the class label Y , defined by:

infoGain(Xj < t, Y) , H(Y)−H(Y |Xj < t) (15.6)

where H(ˆ̂π) = −
∑C
c=1 π̂c log π̂c

– Gini Index: 1 −
∑
c π̂

2
c is the expected error rate. To see this, note that π̂c is the probability of a

random entry in the leaf belonging to class c.

Entropy and Gini measure are very similar and are more sensitive to changes in class probability than is the
misclassification rate.

• To prevent overfitting, we might want to stop growing a tree as soon as the decrease in error is not sufficient
enough. This is sort of a myopic view - a good example is xor where you might not split the tree at all.
A better solution is to grow the full tree and then perform pruning (MLPP 16.2.3). This can be done by
pruning the branches with the least increase in error. To determine how far back to prune, we can evaluate
the cross-validation error on each such subtree, and then pick the tree whose CV error is within 1 standard
error of the minimum.

• Advantage of CART: (1) easy to interpret; (2) handles mixed discrete/continuous input; (3) insensitive to
monotone transformation; (4) no need for normalization; (5) auto variable selection; (6) relatively robust
to outliers; (7) scales well with large data; (8) can deal with missing inputs. Disadvangtages: (1) prediction
might not be as good because of greedy nature of tree construction; (2) small perturbations in data can greatly
change the structure of the tree. Any errors on the top will propagate down from the tree. In frequentist
terms the trees are high variance estimators which can be fixed by ...

• One way to reduce the variance of an estimate is to average together many estimates. For example, we can
train M different trees on different subsets of the data, chosen randomly with replacement, and then compute
the ensemble:

f(x) =
1

M

M∑
m=1

fm(x) (15.7)

where fm is the m’th tree. This technique is called bagging, which stands for bootstrap aggregating
(MLPP 16.2.5). Unfortunately simply re-running the same algorithm on different random subsets of data
doesn’t reduce the correlation of the predictors. Random Forests not only builds trees on random subsets
of data, but also chooses variables at each node split from random variable subset, in order to decrease the
variance of the predictor. These have better predictive accuracy. Rather than bagging, which is a frequentist
concept, we can perform Bayesian inference over the space of ensembles of trees, which is called Bayesian
adaptive regression trees (BART).

54

Machine Learning Notes Ahmad Humayun

• In contrast to CART, hierarchical mixture of experts can partition the input space using any set of nested linear
decision boundaries (MLPP 16.2.6). Also, HME predictions are an average of experts (which doesn’t lead
overfitting). Moreover, fitting an HME involves solving a smooth continuous optimization problem (usually
using EM), which is less likely to be prone to local optima than the standard greedy discrete optimization
methods used to fit decision trees.

• Another way to create non-linear models with multiple inputs is to use a generalized additive model
(GAM) (MLPP 16.3), which is a model of the form:

f(x) = α0 +

D∑
j=1

fj(xj) (15.8)

= βTφ(x), where φ(x) = [1,φ1(x1), . . . ,φD(xD)] (15.9)

We can extend GAMs by allowing for interaction effects. In general we can make the following decomposition,
even though we need to limit the number of higher-order interactions otherwise there will be too many
parameters to fit:

f(x) = β0 +

D∑
j=1

fj(xj) +
∑
j,k

fjk(xj , xk) +
∑
j,k,l

fjkl(xj , xk, xl) + . . . (15.10)

It is common to use a greedy search to decide which variables to add. The multivariate adaptive regression
splines (MARS) (MLPP 16.3.3) algorithm is one example of this. It fits models of this form, where it uses
a tensor product basis of regression splines to represent the multidimensional regression functions. The whole
procedure is closely related to CART.

• Boosting (MLPP 16.4) is a greedy algorithm for fitting adaptive basis-function models of the form 15.2,
where the φm are generated by an algorithm called a weak learner, The algorithm works by applying the
weak learner sequentially to weighted versions of the data, where more weight is given to samples that were
mis-classified by earlier rounds. A boosted decision tree is a model where the weak learner is a decision
tree - these are supposed to be quite a good off-the-shelf classifier. Theory says that one could boost the
performance (on the training set) of any weak learner arbitrarily high, provided the weak learner could always
perform slightly better than chance. The test error also keeps reducing for a long time even after the training
error has gone to zero. The test error would eventually go up - but boosting is very resistant to overfitting.
The following table shows the common loss functions for boosting:

Name Loss Derivative f∗ Algorithm

Squared error 1
2 (yi − f(xi))

2 yi − f(xi) E[y|xi] L2Boosting
Absolute error [yi − f(xi)] sgn(yi − f(xi)) median(y|xi) Gradient boosting
Exponential error exp(−ỹif(xi)) −ỹi exp(−ỹif(xi))

1
2 log πi

1−πi AdaBoost

Logloss log(1 + e−ỹif(xi)) ỹi − πi 1
2 log πi

1−πi LogitBoost

• (MLPP 16.4.1) The goal of boosting is to solve the following optimization problem:

min
f

N∑
i=1

L(yi, f(xi)) (15.11)

and L(y, ŷ) is some loss function, and f is assumed to be an ABM model as in equation 15.2. For binary
classification, the obvious loss is 0-1 loss, but this is not differentiable. Instead it is common to use logloss,
which is a convex upper bound on 0-1 loss. In this case, one cn show that the optimal estimate is given by:

f∗(x) =
1

2
log
P(ŷ = 1|x)

P(ŷ = −1|x)
(15.12)

55

Ahmad Humayun Machine Learning Notes

where ŷ = {−1,+1}. An alternative convex upper bound is exponential loss, defined by:

L(ŷ, f) = exp(−ŷ, f) (15.13)

Since finding the optimal f is hard, we shall tackle it sequentially. We initialize by defining:

f0(x) = arg min
γ

N∑
i=1

L(yi, f(xi;γ)) (15.14)

For example, if we use squared error, we can set f0(x) = ȳ, and if we use log-loss or exponential loss, we can

set f0(x) = 1
2 log π̂

1−π̂ , where π̂ = 1
N

∑N
i=1 I(yi = 1). Then an iteration m, we compute:

(βm,γm) = arg min
β,γ

N∑
i=1

L(yi, fm−1(xi) + βφ(xi;γ)) (15.15)

and then we set: fm(x) := fm−1(x)+βmφ(x;γm). The key point is that we do not go back and adjust earlier
parameters. This is why the method is called forward stagewise additive modeling. We continue this
for a fixed number of iterations M . In fact M is the main tuning parameter of the method. Often we pick
it by monitoring the performance on a separate validation set, and then stopping once performance starts
to decrease; this is called early stopping. In practice, better (test set) performance can be obtained by
performing “partial updated” of the form: fm(x) := fm−1(x) + νβmφ(x;γm). Here 0 < ν ≤ 1 is a step-size
parameter. This is called shrinkage.

• Adaboost (MLPP 16.4.3) applies a wi,m is a weight applied to a data-case i

Algorithm 3: AdaBoost for binary classification with exponential loss

1 wi = 1/N
2 for i = 1 : N do
3 Fit a classifier φm(x) to the training set using weights w

4 Compute εm =
∑N
i=1 wi,mI(ỹi 6=φm(xi))∑N

i=1 wi,m

5 Compute αm = log[(1− εm)/εm]
6 Set wi ← wi exp[αmI(ỹi 6= φm(xi))]

7 return f(x) = sgn
[∑M

m=1 αmφm(x)
]

• Since Adaboost uses exponential loss, it puts too much weight on misclassified examples. This method makes
it sensitive to outliers. In addition e−ỹf is not the logarithm of any pmf, for binary variables ỹ ∈ {−1,+1}.
A natural alternative is to use logloss instead. This only punishes mistakes linearly. Furthermore, it means
that we will be able to extract probabilities from the final learned function, using

P(y = 1|x) =
1

1 + e−2f(x)
(15.16)

This can be used to minimize the expected log-loss and we get the logitBoost (MLPP 16.4.4).

• Rather than deriving new versions of boosting for every different loss function, it is possible to derive a generic
version; known as gradient boosting (MLPP 16.4.5).

• Of all the possible variables, j = 1 : D, if we pick the one j(m) that best predicts the residual error - and make
this as our weak learner - we have an algorithm called sparse boosting(MLPP 16.4.6). This is identical to
the matching pursuit algorithm. We will get a sparse solution if M is small.

56

Machine Learning Notes Ahmad Humayun

x0

x1

x2

x3

hθ(x)

(a) Neuron model

x0

x1

x2

x3

a2
0

a2
1

a2
2

a2
3

hΘ(x)

Layer 1

(input)

Layer 2

(hidden)

Layer 3

(output)

(b) Neural Network

x0

x1

x2

x3

a2
0

a2
1

a2
2

a2
3

a2
3

a3
0

a3
1

a3
2

a3
3

a3
3

hΘ(x)

Layer 1

(input)

Layer 2 Layer 3

(hidden layers)

Layer 4

(output)

(c) Neural Network for 3-ary classification

Figure 10: In 10a we use a logistic unit, where the input x acting as dendrites, the red node is the processing unit,
and the output wire leading to hθ(x) is the Axon. The dotted line shows the constant bias unit with x0 = 1 input.
In 10b each layers output is passed as an input to the next layer. Layers sandwiched between input and output are
called the hidden layers. All layers (except the output layer) also have a bias unit. 10c extends the neural network
model in 10b to a multi-class classification problem. In this example we are trying to classify three possible classes.

• It is common to use CART models as weak learners. It is usually advisable to use a shallow tree, so that the
variance is low, even though the bias will be high - which is compensated with boosting. The parameters to
tune are the height of the tree; the number of rounds of boosting, M ; and ν, the shrinkage factor. If we restrict
trees to J leaves (J = 2 is a stump i.e. only one variable decision; J = 3 is three variable decision), then
empirically its shown that J ≈ 6 gives good results. If we combine gradient boosting with shallow regression
trees, it is known as multivariate adaptive regression trees (MART).

• Boosting works well because of two reasons (MLPP 16.4.8). It can be viewed as `1 regularization because
once we have all possible weak learners of the form φ(x) = [φ1(x), . . . , φK(x)], we can use `1 regularization
to select a subset of these. Alternatively we can use boosting where at each step a weak learner creates a new
φk on the fly. Another reason for the power of boosting is that it maximizes the margin on the training data.

• The explanation of boosting up until now has been very frequentist. For a more Bayesian view (MLPP 16.4.9),
you can think of a mixture of experts model where each expert P(y|x,γm) is like a weak learner. In this
scheme, when training with EM, in the E step, where the posterior responsibilities reflect how well the existing
experts explain a data point; if this is a poor fit, these data points will have more influence on the next expert
that is fitted.

• As the number of features increase, creating a function with polynomial features becomes really expensive.
For example, if x ∈ <100, the number of parameters required for a function containing all second order
features (i.e. {x2

1, x1x2, x1x3, . . . , x1x100, x
2
2, x2x3, . . . }) would be ≈ 5000. Neural Networks (MLPP 16.5)

(multi-layer perceptrons (MLP)) provide a natural way to deal with this problem.

• Each neuron in the brain is a small processing unit. It has a number of input wires called the Dendrites,
which passes messages to the nucleus, does some processing, and passes the output through its output wires
known as the Axons. In an artificial Neuron model, we will use a simple logistic unit. These networks receive
input, let’s say x = [x0, x1, x2, x3]T, and work with parameters θ = [θ0, θ1, θ2, θ3]T, where, x0 = 1 always -
hence known as the bias unit. The so called activation function or transfer function g(x;θ) usually a
sigmoid (logistic) or a tanh function. Figure 10a shows an example. The parameters θ are also called weights
in neural network literature. It is important that the activation function to be non-linear otherwise the whole
model boils down to a large linear model.

57

Ahmad Humayun Machine Learning Notes

• We can augment the neuron model to create a neural network. The representation is similar, as given in
Figure 10b. Let’s introduce some new notation: ali is the activation of unit i in layer l; the neural network is
parameterized by Θl, which is a matrix of weights/parameters controlling the function mapping from layer l to
layer l+ 1. We will denote row r and column c’s value in the parameter matrix as Θl

[r][c−1]. The computation
involved in a neural network is iterative. For the model given in Figure 10b, the computation is as follows:

a2
r = g

(
Θ1
r0x0 + Θ1

r1x1 + Θ1
r2x2 + Θ1

r3x3

)
= g

(
z2
r

)
(15.17)

hΘ(x) = a3
1 = g

(
Θ2

10a
2
0 + Θ2

11a
2
1 + Θ2

12a
2
2 + Θ2

13a
2
3

)
= g

(
z3

1

)
, (15.18)

where g(·) is the non-linear activation function. Notice that Θ1 ∈ <3×4 i.e. it is a 3 rows (because of there
are 3 un-biased nodes in the hidden layer), 4 columns parameter matrix, where row r gives parameters for
the activation function a2

r. If the network architecture has sl units in layer l (excluding the bias unit), and
sl+1 units in the next layer, then Θl ∈ <sl+1 × (sl+1). For our notation it is important to remember that Θl

are the parameters used by layer l+ 1. We will also denote the input at layer l as al−1. Hence, a1 = x. Now,
we can simply write the computation at layer l as:

zl = Θl−1al−1 (15.19)

al = g
(
zl
)

, (15.20)

where al = [al0, a
l
1, . . . , a

l
sl

]T. The above algorithm is known as Forward Propagation, since we are always
pushing the outputs from one layer as inputs to the next layer. The idea of learning parameters at layer l
from the outputs of layer l − 1, allows neural networks to learn highly non-linear functions. Adding layers is
like adding to the order of features accomodated by our output function. Probabilistically, if we were doing
binary classification, we pass the output through a sigmoid, as in a GLM:

P(y|x,Θ) = Ber(y | sigm(ΘL−1aL−1)) (15.21)

For regression it would be:

P(y|x,Θ) = N (y |ΘL−1aL−1, σ2) (15.22)

• The original neural network architecture can be extended to act as a multi-class classification algorithm. In
this setting if we are classifying K classes, hΘ(x) ∈ <K . For the example given in Figure 10c, K = 3. Our
aim here would be to have the following binary vector outputs for each of the 3 classes case,

hΘ(x) ≈



[
1 0 0

]T
when class 1[

0 1 0
]T

when class 2[
0 0 1

]T
when class 3

. (15.23)

If we add mutual inhibition arcs between the output units, ensuring that only one of them turns on, we
can enforce a sum-to-one constraint. Essentially we train each output unit to classify a specific class. Hence,
Figure 10c has 3 output units (at layer 4). Following our figure we can represent out training set of N examples
as
(
x(1),y(1)

)
,
(
x(2),y(2)

)
, . . .

(
x(N),y(N)

)
, where y(i) takes one of three vector outputs given in Equation

15.23, i.e:

y(i) ∈


1

0
0

 ,
0

1
0

 ,
0

0
1

 (15.24)

Now that we know how to represent neural networks in both multi-class and binary classification problems,
the question is how to train them. In other words how do we find our parameters set Θl for all layers. An
interesting situation to think about here is the case of two layer neural network. The parameters of a two
layer neural network can be easily found by gradient descent methods we have encountered previously.

58

Machine Learning Notes Ahmad Humayun

• Cost function for Neural Network Learning: Some notation: L is the number of layers in the neural
network; sl is the number of units in layer l, when not counting the bias unit. For instance, L = 4 and s2 = 4
in Figure 10c. Since K is the number of classes being classified, for binary-classification K = 1 and there is
only 1 output unit giving y ∈ {0, 1}. Hence, hΘ(x) ∈ < and the number of units in the output layer is sL = 1.
For multi-class classification when K ≥ 3 (note K = 2 should be treated as a binary classification problem
- not as a multi-class problem), there are K output units and y ∈ <K as demonstrated in Equation 15.24.
Hence, hΘ(x) ∈ <K . Note that sL = K, i.e. the number of output units is equal to the number of dimensions
in the output variable y.

The cost function for a neural network would be a generalization of the logistic regression cost function.
Rather than having “one logistic regression output per unit, we will have K of them.” The cost function:

J(Θ) = − 1

N


N∑
i=1

K∑
k=1

y
(i)
k log

(
hΘ(x(i))k

)
+ (1− y

(i)
k) log

(
1− hΘ(x(i))k

)
︸ ︷︷ ︸

sum over K output units

+
λ

2N

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
Θl
ji

)2

,

(15.25)

where hΘ(x(i)) ∈ <K , and hΘ(x(i))k refers to the k-th element in the vector. Similarly, y(i) ∈ <K , and y
(i)
k

refers to the k-th element. Remember that K = 1 for the binary classification case. As discussed previously,
Θl ∈ <sl+1×sl+1, i.e. the number of parameters needed for layer l + 1 is equivalent to the number of inputs
for layer l, sl (plus the bias unit) times the number of units (sans the bias unit) in layer l+ 1, sl+1. Note that
for the regularization constraint at layer l + 1,

∑sl
i=1(·) sums over the number of inputs, and

∑sl+1

j=1 (·) sums
over the number of units at that layer.

Although the first term in Equation 15.25 only sums over the number of output units, hΘ(·) is a function over
all parameters in the neural network. This will allow us to optimize all the parameters in the neural network.

• Backpropagation Algorithm: Given the J(Θ) in Equation 15.25, we would like to find minΘ J(Θ). For
this, for a gradient dependent optimization method, we would need to compute J(Θ) and ∂

∂Θl
ji

J(Θ) for any

provided Θ. Suppose that we only have one training example, i.e. N = 1. This will reduce Equation 15.25 to

J(Θ) = −


K∑
k=1

y
(i)
k log

(
hΘ(x(i))k

)
+ (1− y

(i)
k) log

(
1− hθ(x(i))k

)
︸ ︷︷ ︸

sum over K output units

+
λ

2

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
Θ

(l)
ji

)2

. (15.26)

First, following the forward propagation model (given in Equation 15.19 and 15.20), the final activation for
Figure 10c would be:

hΘ(x) = a4 = g(z4) = g
(
Θ3g

(
Θ2g

(
Θ1a1

)))
(15.27)

Note that if we use Equation 15.27 to compute the ∂
∂Θl

ji

J(Θ), it would be increasingly impossible, as it calls

for derivating repeated invocations of the non-linear g(·). We take an alternative approach where we will keep
track of δlj , the error in each unit j in layer l. The error here means how much we would like to change alj to
get to the true value. Looking at figure 10c, for each output unit (L = 4):

δ4
j = a4

j − yj = hΘ(x)j − yj (15.28)

δ4 = a4 − y (15.29)

59

Ahmad Humayun Machine Learning Notes

For all the previous layers we have the error terms are computed as follows (why????):

δ3 =
(
Θ3
)T
δ4 . ∗ g′

(
z3
)

(15.30)

δ2 =
(
Θ2
)T
δ3 . ∗ g′

(
z2
)
. (15.31)

where g′
(
z3
)

= a3 . ∗ (1− a3) and g′
(
z2
)

= a2 . ∗ (1− a2). Note that there is no δ1 since there is no “error”
in the input term. This algorithm is called back-propagation since all the errors are propagated back to
previous layers. If we ignore the regularization terms, it can be proved that the partial derivative is equal to

∂

∂Θl
ji

J(Θ) = aljδ
l+1
i if λ = 0 (15.32)

Since the total error term for N training samples would just be the sum of the error term computed in
Equation 15.32 for each example, our final algorithm would be as given in Algorithm 4.

Algorithm 4: Neural networks learning by Back Propagation

1 Data: Training set
{(

x(1), y(1)
)
,
(
x(2), y(2)

)
, . . .

(
x(N), y(N)

)}
2 ∆l

ji := 0 ∀ l, i, j // will be used to compute ∂
∂Θlji

J(Θ)

/* iterate over all training examples */

3 for i := 1 : N do
4 a1 := x(i) // initialize the activation of the input layer

5 Forward propagation (Eq. 15.19 and 15.20) to compute al for l ∈ {2, 3, . . . , L}
6 δL = aL − y(i) // compute error on the output layer

/* back propagate error */

7 for l := (L− 1) to 2 do
8 g′

(
zl
)

:= al . ∗ (1− al)

9 δl :=
(
Θl
)T

δl+1 . ∗ g′
(
zl
)

10 ∆l
ji := ∆l

ji + aliδ
l+1
j

11 for ∀ j do
12 if j = 0 then
13 5 Dl

ji = 1
N∆l

ji

14 else

15 Dl
ji = 1

N∆l
ji + λ

NΘl
ji

The last for-loop adds the regularization term. It can be mathematically proven that ∂
∂Θl

ji

J(Θ) = Dl
ji.

• There is one important point about running the optimization over Algorithm 4. Suppose if we initialize all
Θl to a constant 0, this essentially means setting all the weights to 0. This is equivalent to setting g(zlj) = 1

2 .
Hence, all units in all layers will exactly be the same. A direct corollary of this 0 initialization is that even
all error terms δlk will be the same. This would make all partial derivatives the same too. Hence, after each
update, parameters corresponding to inputs going into each of the sj+1 hidden units would be identitical. This
is not only true for choosing an initial parameter 0 but for any other constant value. Hence it is important
to randomly initialize the parameters.

• The purpose of the hidden units is to learn non-linear combinations of the original inputs; this is called
feature extraction or feature construction (MLPP 16.5.1). These hidden features are then passed as
input to the final GLM. This approach is particularly useful for problems where the original input features are
not very individually informative. A form of MLP which is particularly well suited to 1d signals like speech
or text, or 2d signals like images, is the convolutional neural network. This is an MLP in which the

60

Machine Learning Notes Ahmad Humayun

hidden units have local receptive fields (as in the primary visual cortex), and in which the weights are tied
or shared across the image, in order to reduce the number of parameters. Intuitively, the effect of such spatial
parameter tying is that any useful features that are “discovered” in some portion of the image can be re-used
everywhere else without having to be independently learned. The resulting network then exhibits translation
invariance, meaning it can classify patterns no matter where they occur inside the input image. For instance
if you have an input image of 29 × 29, the first layer could be 6 feature maps, each of which is of 13 × 13
size. Each one of these 13 × 13 × 6 = 1014 hidden nodes/neurons is computed by convolving 5 × 5 weight
matrix, adding a bias, and then passing the result through some non-linear function. Each of the 6 feature
map only has 5 × 5 + 1 = 26 adjustable weights (which need to be learned). This is much less than the full
model which did not share these parameters, 1014× 26 = 26, 364, as compared to 6× 26 = 156 weights.

• If we allow feedback connections, the model is known as a recurrent neural network (RNN) (MLPP
16.5.2); this defines a nonlinear dynamical system.

• Ensemble Learning (MLPP 16.6) refers to learning a weighted combination of base models of the form:

f(y|x,π) =
∑
m∈M

wmfm(y|x) (15.33)

where wm are tunable weights. Ensemble learning is sometimes called a committee method, since each base
model fm gets a weighted vote. This is clearly related to learning adaptive-basis function models. One can
also argue that neural net is an ensemble method where fm represents the m’th hidden unit, and wm are
output layer weights. The weights are learned by a method called stacking which is simply minimizing loss
over all examples trained with LOOCV estimate:

ŵ = arg min
w

N∑
i=1

L

(
yi,

M∑
m=1

wmf̂
−i
m (x)

)
(15.34)

where f̂−im (x) is the predictor obtained by training on data excluding (xi, yi).

• All the models discussed in this section have good predictive accuracy, but they are black boxes in the sense
that they are hard to diagnose what features are important. One useful way to measure the effect of a set s
of variables on the output is to compute a partial dependence plot (MLPP 16.8). This is a plot of f(xs)
vs xs, where f(xs) is defined as the response to xs with the other predictors averaged out:

f(xs) =
1

N

N∑
i=1

f(xs,xi,−s) (15.35)

Another useful summary is to find the relative important of predictor variables. The basic idea can be
viewed in ensemble of trees, where we count how often variable j is used as a node in any of the trees. In
particular, let vj =

∑M
m=1 I(j ∈ Tm) be the proportion of all splitting rules that use xj , where Tm is the m’th

tree.

16 Markov and Hidden Markov Models

• Here we discuss probabilistic models for sequences of observations, X1, . . . , XT , of arbitrary length T .

• A Markov chain, as discussed before, assumes that it is enough to know Xt captures all the relevant information
for predicting the future:

P(X1:T) = P(X1)

T∏
t=2

P(Xt|Xt−1) (16.1)

61

Ahmad Humayun Machine Learning Notes

Sunny Rain Snow
Sunny (S) 0.9 0.095 0.005
Rain (R) 0.5 0.45 0.05
Snow (N) 0.3 0.4 0.3

S

R N

0.095

0.0050.5

0.005

0.3

0.4

0.45 0.3

0.9

(a) State transition table and diagram for Atlanta’s weather model

1 2 3 4
0.9

0.9
0.5 0.5

0.1 0.1 1.0

(b) A reducible 4-state chain

Figure 11

If we assume the transition function P(Xt|Xt−1) is independent of time, then the chain is called homoge-
neous, stationary, or time-invariant. This is an example of parameter tying, since the same parameter
is shared by multiple variables. This allows us to model an arbitrary number of variables using a fixed number
of parameters; such models are called stochastic processes. If we assume the observe variables are discrete,
so Xt ∈ {1, . . . ,K}, this is called a discrete-state or finite-state Markov chain.

• When Xt is discrete, so Xt ∈ {1, . . . ,K}., the conditional distribution P(Xt|Xt−1) can be written as a K×K
matrix, known as the transition matrix A, where Aij = P(Xt = j|Xt−1 = i) is the probability of going
from state i from state j (MLPP 17.2.1). Each row of the matrix sums to one

∑
j Aij = 1, hence making it

a stochastic matrix. A stationary, finite-state Markov chain is equivalent to a stochastic automaton. It
is common to visualize such automata by drawing a directed graph (see Figure 11a), where nodes represent
states and arrows represent legal transitions, i.e., non-zero elements of A. This is known as a state transition
diagram. The weights associated with the arcs are the probabilities. The Aij element of the transition matrix
specifies the probability of getting from i to j in one step. The n-step transition matrix A(n) is defined as
Aij(n) , Pr(Xt+n = j|Xt = i), which is the probability of getting from i to j in exactly n steps. Obviously
A(1) = A. The Chapman-Kolmogorov equations state that:

Aij(m+ n) =

K∑
k=1

Aij(m)Ajk(n), A(m+ n) = A(m)A(n), hence A(n) = An (16.2)

• We define the state space to be all the words in English (or some other language). The marginal probabilities
P(Xt = k) are called unigram statistics. If we use a first-order Markov model, then P(Xt = k|Xt1 = j)
is called a bigram model. If we use a second-order Markov model, then P(Xt = k|Xt−1 = j,Xt−2 = i) is
called a trigram model. And so on. In general these are called n-gram models.

• Given data D = (x1, . . . ,xN), where xi = (xi,1, . . . , xi,Ti) is a sequence of Ti states, the log likelihood is given
by:

logP(D|θ) =

N∑
i=1

logP(xi|θ) =

K∑
j=1

N1
j log πj +

K∑
j=1

K∑
k=1

Njk logAjk (16.3)

where πj is the probability that you start a particular state. Plus we define the following counts:

N1
j ,

N∑
i=1

I(xi,1=k), Njk ,
N∑
i=1

Ti−1∑
t=1

I(xi,t = j, xi,t+1 = k) (16.4)

62

Machine Learning Notes Ahmad Humayun

where N1
j shows how many times state j occurs as the first state. Njk just counts how many times state j is

followed by state k in the data D. Hence, we can write the MLE as normalized counts:

π̂j =
N1
j

N
, Âjk =

Njk∑K
k=1Njk

(16.5)

These are essentially MLE estimates for creating the transition table from data (MLPP 17.2.2.1). The problem
of zero-counts becomes acute because in an n-gram model there are O(Kn) parameters to fit. There might be
not enough data to find all the parameters. One simple solution is add-one smoothing, which adds one to all
empirical counts before normalizing - which supposes all n-grams are equally likely unless indicated by data,
which is not very realistic.

• A common heuristic used to fix the sparse data problem is deleted interpolation (MLPP 17.2.2.2). This
defines the transition matrix as a convex combination of the bigram frequencies fjk = Njk/Nj and the unigram
frequencies fk = Nk/N :

Ajk = (1− λ)fjk + λfk (16.6)

The term λ is usually set by cross validation. There is also a closely related technique called backoff smooth-
ing; the idea is that if fjk is too small, we “back off” to a more reliable estimate, namely fk. The deleted
interpolation heuristic is an approximation to the prediction made by a simple hierarchical Bayesian model.
Unlike deleted interpolation, the Bayesian model uses a context-dependent weight λk to combine mk, the
prior mean, with the empirical frequency fjk. The prior mean can be set by seeing the number of different
contexts it can occur mk ∝ |{j : Njk > 0}|, rather than just the number of times it occurs.

• To handle out of vocabulary states, we can use an a special symbol unk, and assign a certain amount of
probability to it (MLPP 17.2.2.3).

• We have looked at Markov models as joint probability distributions, but we can also view them as stochastic
dynamical systems, where we hop between states. In this interpretation we can think of the long term
distribution over states, which is known as the stationary distribution of the chain.

Let Aij = P(Xt = j |Xt−1 = i) be the one-step transition matrix and let πt(j) = P(Xt = j) be the probability
of being in state j at time t. It is conventional in this context to assume that π is a row vector. If we have
an initial distribution over states π0, then at time 1 we have:

π1(j) =
∑
i

π0(i)Aij , π1 = π0A (16.7)

If we can find a stage π = πA then we say we have reached the stationary distribution (aka invariant or
equilibrium distribution) (MLPP 17.2.3.1). The thing special about this state is that once we reach it we
can never leave this distribution. If we consider a markov chain, we can find the stationary distribution for
variable i, πi by following this global balance equation:

πi
∑
j : i 6=j

Aij =
∑
j : i 6=j

πjAji, s.t.

K∑
i=1

πi = 1 (16.8)

i.e. the probability of being in state i times the net flow out of state i must equal to the probability of being
in each other state j times the net flow from the state into i.

• To find a the stationary distribution, we can solve the eigenvector problem ATv = v and then set π = vT,
where v is an eigenvector with eigenvalue 1 (MLPP 17.2.3.2). We can be sure such an eigenvector exists, since
A is a row-stochastic matrix, so A1 = 1. We need to normalize v at the end to ensure it sums to one. Note,
however the eigenvectors are only guaranteed to be real-valued if the matrix is positive Aij > 0. There are
ways to handle this general case where some transition probabilities can be 0 or 1.

63

Ahmad Humayun Machine Learning Notes

• If we look at Figure 11b, we can see that if we start with state 4 we will always remain there - hence its an
absorbing state. Thus π = (0, 0, 0, 1) is a possible stationary distribution; another one is π = (0.5, 0.5, 0, 0).
If we start at state 3, we will end up at either of the two stationary distributions. This is called a reducible
chain (MLPP 17.2.3.3). Hence a necessary condition to have a unique stationary distribution is that its a
singly connected component i.e. you can reach any state from any other state - this is called irreducible.

• Let us say that a chain has a limiting distribution if πj = limn→∞Anij exists and is independent of i, for all
j. If this holds, then the long-run distribution over states will be independent of the starting state:

P(Xt = j) =
∑
i

P(X0 = i)Aij(t)→ πj at t→∞ (16.9)

We define the period of state i, to be d(i) = gcd{t : Aii(t) > 0}. We say a state i is aperiodic if d(i) = 1.
A sufficient condition to ensure that the state is aperiodic if you can go from state i to state j and back, or
there is a self-loop. We say a chain is aperiodic if all its states are aperiodic.

• To generalize the condition for having a stationary distributions to Markov chains whose state space is not
finite, we need to generalize these two definitions. Now for a stationary distribution, apart from irreducibility
and aperiodicity, you need each state to be recurrent. A recurrent state means that you will return to
this state with probability 1. In Figure 11b, state 3 is non-recurrent / transient state. It is clear that any
finite-state irreducible chain is recurrent. If our states were integers, and our chain was random walk, and if
we started from state 0, then we can always return to state 0, but the distribution over all other states keeps
spreading over a larger set of integers as time goes by. Hence, the distribution never converges to a stationary
distribution. We can define a state to be non-null recurrent if the expected time to return to this state
is finite. A state is ergodic if it is aperiodic, recurrent, and non-null, and if all states are ergodic, then the
chain is ergodic.

Theorem 16.1. Ergodic Markov Chain (MLPP Theorem 17.2.2): Every irreducible (signly connected), er-
godic Markov chain has a limiting distribution which is equal to π, its unique stationary distribution.

• Hidden Markov Model (HMM) (MLPP 17.3) consistes of a discrete-time discrete-state Markov chain,
with hidden states zt ∈ {1, . . . ,K}, plus an observation model P(xt|zt). The corresponding joint distribution
has the form:

P(z1:T , x1:T) = P(z1:T)P(x1:T |z1:T) =

[
P(z1)

T∏
t=2

P(zt|zt−1)

] [
T∏
t=1

P(xt|zt)

]
(16.10)

The observations in an HMM can be discrete or continuous. If they are discrete, it is common for the
observation model to be an observation matrix:

P(xt = l | zt = k,θ) = B(k, l) (16.11)

If the observations are continuous, it is common for the observation model to be a conditional Gaussian:

P(xt|zt = k,θ) = N (xt|µk,Σk) (16.12)

• Inference in HMMs (MLPP 17.4) is basically inferring the hidden state from the observations, assuming
the parameters are known. The same algos also apply to other chain-structured graphical models such chain
CRFs. An example that is used is the occasionally dishonest casino, where you have a fair and loaded dice,
and between some throws you switch dices, where the in the loaded dice you have 1/2 a chance of getting a
6. Here, the observations xt are the face of the dice rolled, and zt has two states zt ∈ {L,F}. To infer the
hidden state there are different methods:

64

Machine Learning Notes Ahmad Humayun

– Filtering means computing the belief state P(zt|x1:t) online, or recursively, as the data steams in. This
reduces nouse more than simply estimating the hidden state using just the current estimate, P(zt|xt).
In the context of HMM this can be done by the forwards algorithm.

– Smoothing means computing P(zt|x1:T) offline, given all the evidence. In the context of HMM this can
be done by the forwards-backwards algorithm.

– Fixed lag smoothing means P(zt−`|x1:t), where ` > 0 is called the lag. Gives better performance than
filtering, but incurs slight delay. By changing the size of lag one can tradeoff accuracy vs delay.

– Prediction we might want to predict the future given the past, i.e., to compute P(zt+h|x1:t), where
h > 0 is the prediction horizon. If suppose h = 2; then we have:

P(zt+2|x1:t) =
∑
zt+1

∑
zt

P(zt+2|zt+1)P(zt+1|zt)P(zt|x1:t) (16.13)

– MAP estimation means computing arg maxz1:T
P(z1:T |x1:T), which is a most probable state sequence

(for HMM, this can be done by Viterbi decoding). Note that all previous 3 inferences give probability
estimates over states, whereas this gives a sequence of states.

• The forwards algorithm (MLPP 17.4.2) where we compute the filtered marginals P(zt|x1:t) in an HMM.
In the first step we compute the one-step-ahead predictive density:

P(zt = j|x1:t−1) =
∑
i

P(zt = j|zt−1 = i)P(zt−1 = i|x1:t−1) (16.14)

In the update step, we absorb the observed data from time t using Bayes rule:

αt(j) , P(zt = j|x1:t) = P(zt = j|xt,x1:t−1) (16.15)

=
1

Zt
P(xt|zt = j,���x1:t−1)P(zt = j|x1:t−1) (16.16)

The cancellation is possible because HMMs suppose conditional independence of observations. Where the
normalization constant is

Zt , P(xt|x1:t−1) =
∑
j

P(xt|zt = j)P(zt = j|x1:t−1) (16.17)

This process is known as the predict-update cycle. The distribution P(zt|x1:t) is called the (filtered) belief
state at time t, and is a vector of K numbers, often denoted by αt.

Algorithm 5: Forwards algorithm for HMM

Input: Transition matrix A(i, j) , P(zt = j|zt−1 = i)
Input: Local evidence vectors (emission probability) ψt(j) , P(xt|zt = j)
Input: Initial state distribution π(j) , P(z1 = j)

1 [α1, Z1] := normalize(ψ1 � π) // computing initial normalization and belief state

// Recall, P(z1 = j)P(x1|z1 = j) = P(x1)P(z1 = j|x1)

2 for τ := 2 : t do
3 dτ = ATατ−1 // P(zτ = j|x1:τ−1) which sums over all incoming zτ−1 states

4 [ατ , Zτ] := normzalize(ψτ � dτ) // update step

5 Returns α1:t and logP(x1:t) =
∑
τ logZτ // Also return the log probability of the evidence

6 Subroutine: [v, Z] = normalize(u) : Z =
∑
j uj ; vj = uj/Z;

65

Ahmad Humayun Machine Learning Notes

• The forwards-backwards algorithm (FB) (MLPP 17.4.3) is to compute the smoothed marginals P(zt = j|x1:T).
The key to the algorithm is that you can decompose this into two probabilities:

P(zt = j|x1:T) ∝ P(zt = j,xt+1:T |x1:t) ∝ P(zt = j|x1:t)P(xt+1:T |zt = j,���x1:T) (16.18)

We already compute αt(j) , P(zt = j|x1:t) using the forwards algorithm. We define: βt(j) , P(xt+1:T |zt = j),
which is the conditional likelihood of future evidence given that the hidden state at time t is j. We also define
γj(j) , P(zt = j|x1:T), which is the desired output. Of course, γj(j) ∝ αt(j)βt(j). We go in reverse order:
given βt we compute βt−1:

βt−1(j) = P(xt:T |zt−1 = j) (16.19)

=
∑
i

P(xt+1:T |zt = i)P(xt|zt = i,��
��zt−1 = j)P(zt = i|zt−1 = j) (16.20)

=
∑
i

βt(i)ψt(i)A(j, i) (16.21)

βt−1 = A(ψt � βt) (16.22)

Where the base case is: βT (i) = P(xT+1:T |zt = i) = P(∅|zt = i) = 1. Hence, we can adjust the Algorithm 5
to compute backward messages, by just having a loop which goes from T to t, and computes βτ from βτ+1

at every step. FB algorithm takes O(K2T) time to compute.

• The Viterbi algorithm (MLPP 17.4.4) can be used to compute the most probable sequence of states in
a chain-structured graphical model i.e. z∗ = arg maxz1:T

P(z1:T |x1:T). This is equivalent to computing a
shortest path through the trellis diagram, where the nodes are possible states at each time step, and the
node and edge weights are log probabilities. That is the weight for the path of states z1, . . . , zT is given by:

log π1(z1) + logψ1(z1) +

T∑
t=2

[logA(zt−1, zt) + logψt(zt)] (16.23)

Note: The jointly most probably sequence of states (joint MAP) is not necessarily the same as the sequence
of marginally most probable states. The former is given by the Viterbi algorithm, whereas the latter is given
by the maximizer of the posterior marginals or MPM:

ẑ =

(
arg max

z1

P(z1|x1:t), . . . , arg max
zT

P(zT |x1:T)

)
(16.24)

Viterbi works well because joint MAP gives a single plausible path between all the states. On the other hand
MPM estimates states which are individually most likely given all the data. This is more robust than Viterbi
because it estimates each node averaging over its neighbors, rather than conditioning on specific value of its
neighbors. Note that in Viterbi, when we estimate zt, we “max-out” the other variables:

z∗t = arg max
zt

max
z1:t−1,zt+1:T

P(z1:t−1, zt, zt+1:T |x1:T) (16.25)

• It is tempting to think that we can implement Viterbi by just replacing the sum-operator in the forwards-
backwards with a max-operator in Equation 16.14. With the sum operator the algorithm is called sum-
product, and with the max-operator it is called max-product. In general this can lead to incorrect if there
are multiple equally probable joint assignments. The Viterbi algorithm uses max-product for the forward
pass, but the backward pass uses a traceback procedure to recover the most probably path through the trellis
of states. In more detail, we define:

δt(j) , max
z1,...,zt−1

P(z1:t−1, zt = j |x1:t) (16.26)

66

Machine Learning Notes Ahmad Humayun

S1 S2 S3

0.5

0.4

0.4

0.6

0.5 0.2 0.4

v1 0.2 0 0.5
v2 0.3 0.5 0.05
v3 0.4 0.3 0.4
v4 0.1 0.2 0.05

ψ

(a) State transition diagram with emission
probabilities for K = 4 states.

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

S1

S2

S3

0.4\0.1

0.5\0.4 0.5\0.4 0.5\0.2

0.5\0.0

0.5\0.2

0.4\0.4 0.6\0.3 0.4\0.5

v4 v4 v3 v3 v1

Observations

S
ta

te
s

(b) Illustration of the trellis diagram for viterbi algorithm applied
to sequence v4, v4, v3, v3, v1. Each edge from i to j indicates
A(i, j) = P(zt = j|zt−1 = i) followed by ψt(j) = P(xt = vt|zt = j)

Figure 12: A viterbi algorithm example for HMMs. Note that we don’t incorporate initial state distributions π in
this example.

This is the probability of ending up in state j at time t, given that we take the most probable path. The key
insight is that the most probable path to state j at time t must consist of the most probable path to some
other state i at time t− 1, followed by a transition from i to j. Hence,

δt(j) = max
i
δt−1(i)A(i, j)ψt(j) (16.27)

We also keep track of the most likely previous state, for each possible state that we end up in. We initialize by
setting δ1(j) = πjψ1(j). The Figure 12a gives an example, for a case where a person sitting behind a curtain
has a choice of 3 urns S1, S2, S3 to choose from, and each urn has 4 different colored balls v1, v2, v3, v4. After
selecting an urn, they randomly pick the ball and display it across the curtain. They do this five times, and
the balls displayed are v4, v4, v3, v3, v1, and now the goal is to choose the urn zt for each time step. Figure 12b
shows the trellis for the Viterbi for getting the MAP solution given these observations. The time complexity
for Viterbi is O(K2T) and the space complexity is O(KT).

• Viterbi can be extended to return the top N paths. This is called the N-best list (MLPP 17.4.4.5).

• What if you want to learn the parameters for an HMM θ = (π,A,ψ), where π(j) , P(z1 = j) is the initial
state distribution, A(i, j) , P(zt = j|zt−1 = i) is the transition matrix, and ψt(j) , P(xt|zt = j) is the
emission probabilities / local evidence vectors. There are two cases in parameter estimation: (1) when you
know z1:T in the training set; (2) when these states are hidden.

• (MLPP 17.5.1) If we observe the hidden state sequences, we can compute the MLEs for A and π like in
Equation 16.5. The details for extracting ψ depends on the observation model in use. The technique is very
similar to fitting a generative classifier. For example, if each state has a multinoulli distribution associated
with it, with parameters ψ(j)l = P(Xt = l | zt = j), where l ∈ {1, . . . , L} represents the observed symbol,
then the MLE is given by:

ψ̂(j)l =
NX
jl

Nj
, NX

jl ,
N∑
i=1

Ti∑
t=1

I(zi,t = j, xi,t = l) (16.28)

The result is quite intuitive: we simply add up the number of times we are in state j and we see a symbol
l, and divide by the number of times we are in state j. Analogous results can be derived for other kinds of
distributions.

67

Ahmad Humayun Machine Learning Notes

• (MLPP 17.5.2) If we don’t observe zt we are in a situation similar to fitting a mixture model. The most
common approach is to use the EM algorithm to find the MLE or MAP parameters. In the E step the
expected counts are computed: E[N1

k], E[Njk], and E[Nj]. In the M step, for A and π, is just to normalize
the expected counts - which is just adding up the expected number of transitions from j to k, and dividing by
the number of times we transition from j to anything else. For ψ, the M step just adds the expected number
of times we are in state j and we see symbol l, and divide by the expected number of times we are in state j.

• Good initialization for EM can be done by using a smaller fully labeled subset (which has no hidden states);
random restarts; or ignoring markov dependencies and estimating the observation parameters using the stan-
dard mixture model estimation like k-means or EM. These techniques are useful because EM can get stuck in
local minima.

• HMMs can be used as the class conditional density inside a generative classifier (MLPP 17.5.4).

• Model selection in HMM is important too:

– Selecting number of hidden states K is like estimating the number of mixtures in a mixture model (MLPP
17.5.5.1). One way is to do grid search with an objective function which computed cross-validation
likelihood, or BIC score. Another way is to use variational Bayes to extinguish unwanted components.
Or we can also use an infinite HMM which is based on hierarchical Dirichilet process.

– Another model to select in HMM is the sparse transition structure in the state transition model (MLPP
17.5.5.2). Most of the method employ hueristics and alternate between parameter estimation and some
kind of split-merge method. One can also pose this problem as MAP estimation using a minimum entropy
prior.

• Other form of HMMs:

– In a semi-Markov model to predict the next state, you not only need to know the past state, but
we also need to know how long we’ve been in that state (by going over the self-loop transition). When
the state space is not observed directly, the result is called a hidden semi-Markov model (HSMM)
(MLPP 17.6.1).

– A hierarchical HMM (HHMM) (MLPP 17.6.2) is an extension of HMM that is designed to model
domains with hierarchical structure.

– In standard HMM we suppose that observations are conditionally independent given the hidden states.
However, if we add arcs from xt−1 to xt, this is called auto-regressive HMM (AR-HMM) (MLPP
17.6.4). This essentially combines two Markov chains, one on the hidden variables, to capture long range
dependencies, and one on the observed variables to capture short range dependencies.

– If we replace K hidden states by binary representation it is called a factorial HMM (MLPP 17.6.5). For
instance, if we have 210 = 1024 states, this could be represented by C = 10 binary variables zc,t ∈ {0, 1},
where now the observation xτ is now dependent on all zc,τ : c = {1, . . . , C}. Here, we will have C chains
for the hidden states, which might capture different aspects of the signal.

– Dynamic Bayesian Network (DBN) (MLPP 17.6.7) is just a way to represent a stochastic process
using a directed graphical model (dynamic refers to the dynamical nature of the system).

17 State Space Models

• A State Space Model (SSM) is just like an HMM except that the hidden states are continuous (MLPP
18.1). The model can be written in the following generic form:

zt = g(zt−1, ut, εt) (17.1)

xt = h(zt, ut, δt) (17.2)

68

Machine Learning Notes Ahmad Humayun

where zt is the hidden state, ut is an optional input or control signal, xt is the observation, g(·) is the
transition model / temporal model, h(·) is the observation model / measurement model, εt is the
system noise at time t, and δt is the observation noise at time t. We assume that all the parameters of the
model, θ, are known; if not, we can include into the hidden state. One of the primary goals in using SSMs is
to recursively estimate the belief state:

P(zt |x1:t, u1:t, θ) (17.3)

We usually write this as P(zt |x1:t) for brevity. Another important question is how to convert our beliefs about
the hidden state into predictions about future observables by computing the posterior predictive P(xt+1 |x1:t).

• The observation model describes the relationship between the measurements xt and the state zt at time t
(CVPrince 19.1). We treat this as a generative process, and model the likelihood P(xt|zt). We assume that
xt is conditionally independent of z1:t−1 given zt.

• The transition model describes the relationship between states. Typically, we make the Markov assumption:
we assume that zt is conditionally independent of the states z1:t−2 given its immediate predecessor zt−1, and
just model the relationship P(zt|zt−1).

• An important special case for SSMs is when all the CPDs are linear-Gaussian. In other words we assume:

– The transition model is a linear function: zt = Atzt−1 + Btut + εt

– The observation model is a linear function: xt = Ctzt−1 + Dtut + δt

– The system and observation noise are both Gaussian: εt ∼ N (0, Qt), δt ∼ N (0, Rt)

This model is called Linear Gaussian SSM (LG-SSM) or a Linear Dynamical System (LDS). If
the parameters θt , {At,Bt,Ct,Dt,Qt,Rt} are independent of time, the model is called stationary. The
LG-SSM is important because it supports exact inference through the famous Kalman Filter. In particular
if the initial belief state is Gaussian, P(z1) = N (µ1|0,Σ1|0), then all subsequent belief states will also be

Gaussian; we will denote them by P(zt |x1:t) = N (µt|t,Σt|t). The notation denotes µt|τ , E[zt|x1:τ], and
similarly for Σt|t; thus µt|0 denotes the prior for z1 before seeing any data.

• One application of Kalman Filtering is tracking objects (MLPP 18.2.1) from noisy measurements (think of
tracking aircraft from radar measurements). Given an object with z1t, z2t position and velocity of ż1t, ż2t, we
can represent R4 state as follows:

zTt = (z1t, z2t, ż1t, ż2t) (17.4)

If the object is moving with constant velocity but is perturbed by random Gaussian noise εt ∼ N (0,Q) (e.g.
due to wind), the system dynamics can be written as:

zt = At zt−1 + εt (17.5)
z1,t

z2,t

ż1,t

ż2,t

 =


1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1



z1,t−1

z2,t−1

ż1,t−1

ż2,t−1

+


ε1t
ε2t
ε3t
ε4t

 (17.6)

where ∆ is the sampling period. Since there is noise added to the velocity, this is called random accelerations
model. This is like saying that the object moves according to Newton’s laws but is subject to random changes
in velocity. Now suppose we can observe the location of the object but not the velocity. Let xt ∈ R2 represent

69

Ahmad Humayun Machine Learning Notes

the observation, which we assume is subject to Gaussian noise δt ∼ N (0,R). We can model this as:

xt = Ct zt + δt (17.7)
y1,t

y2,t

ż1,t

ż2,t

 =

[
1 0 0 0
0 1 0 0

] 
z1,t

z2,t

ż1,t

ż2,t

+


δ1t
δ2t
δ3t
δ4t

 (17.8)

We can specify our prior (initial) belief about the state of the object, by assuming it Gaussian, P(z1) = N (z1 |µ1|0,Σ1|0).
We can represent our prior ignorance by setting Σ1|0 = ∞I. We now have fully specified the model and can
perform sequential Bayesian updating to compute P(zt |x1:t) using the Kalman Filter.

• We can perform online Bayesian inference for the parameters of various statistical models using SSMs
(MLPP 18.2.3). The basic idea is to let the hidden state represent the regression parameters, and to let
the (time-varying) observation model represent the current data vector. In more detail, define the prior to
be P(θ |θ0,Σ0) (if we want to do online ML estimate, we can just set Σ0 = ∞I. Let the hidden state be
zt = θ). Let the hidden state be zt = θ; if we assume the regression parameters do not change we can set
At = I and Qt = 0I, so:

P(θt |θt−1) = N (θt|θt−1, , 0I) = δθt−1
(θt) (17.9)

Let Ct = xT
t , and Rt = σ2, so the (non-stationary) observation model has the form:

N (xt |Ctzt, Rt) = N (xt |xT
t θt, σ

2) (17.10)

Applying the Kalman filter to this model provides a way to update our posterior beliefs about the parameters
as the data streams in. This is known as the recursive least squares (RLS) algorithm.

• SSM for time series forecasting (MLPP 18.2.4) where the basic idea is to create a generative model of
the data in terms of latent processes, which capture different aspects of the signal. We can then integrate out
the hidden variables to compute the posterior predictive of the visibles.

• In inference (i.e. state estimation) of temporal models, the goal is to compute the marginal posterior distribu-
tion P(zt|x1:t) over the world state zt, at time t, given all the measurements x1:t up until this time (CVPrince
19.1.1). To initially compute the posterior distribution given only x1, our posterior is entirely dependent on
this datum:

P(z1 |x1) =
P(x1|z1)P(z1)∫
P(x1|z1)P(z1)dz1

(17.11)

The distribution P(z1) contains our prior knowledge about the initial state. At time t = 2 we will have a
second measurement x2. Our posterior distribution would become:

P(z2 |x1,x2) =
P(x2|z2)P(z2|x1)∫
P(x2|z2)P(z2|x1)dz2

(17.12)

The prior P(z2|x1) is now based on what we have learned from the previous measurement; the possible values
of the state at this time depend on our knowledge of what happened at the previous time and how these are
affected by the temporal model. Generalizing we have:

P(zt |x1:t) =
P(xt|zt)P(zt|x1:t−1)∫
P(xt|zt)P(zt|x1:t−1)dzt

(17.13)

To evaluate this, we must compute P(zt|x1:t−1), which represents our prior knowledge about zt before we
look at the associated measurement xt. This prior depends on our knowledge P(zt−1|x1:t−1) of the state at
the previous time step and the transition model P(zt|zt−1), and is computed recursively as:

P(zt |x1:t−1) =

∫
P(zt|zt−1)P(zt−1|x1:t−1)dzt−1 (17.14)

70

Machine Learning Notes Ahmad Humayun

which is known as the Chapman-Kolmogorov relation. Hence, inference consists of two alternating
steps: In the prediction step, we compute the prior P(zt|x1:t−1) in Equation 17.14. In the measurement
incorporation step, we combine this prior with the new information from the measurement xt, as given in
Equation 17.13.

• Kalman Filtering (CVPrince 19.2) For this section we will ignore the control inputs ut and hence B and D
would be absent from the analysis. Let’s define our transition model zt = Atzt−1 + εt. This can be written
in a probabilistic form:

P(zt|zt−1) = N (zt |Atzt−1, Qt) (17.15)

The observation model relates the data xt at time t to the state xt = Ctzt + δt. This can also be written in
a probabilistic form:

P(xt|zt) = N (xt |Ctzt, Rt) (17.16)

Notice that this model is quite similar to the factor analysis model in Equation 11.1, which was the relation
between the data and the hidden variable. In the context of the Kalman filter, often the dimension of the
state z, Dz is often larger than the dimension of the measurement x, Dx. Note that the basic form of both the
observation and the transition model is the same. This is chosen by design because it ensures if the marginal
posterior P(zt−1|x1:t−1) at time t − 1 was normal, then so is the marginal posterior P(zt|x1:t) at time t.
Hence, the inference procedure consists of a recursive updating of the means and variances of these normal
distributions. We will represent the marginal posterior at time t as:

P(zt |x1:t) = N (zt |µt,Σt) (17.17)

• In prediction step we compute the prior at time t using the Chapman-Kolmogorov equation:

P(zt |x1:t−1) =

∫
P(zt | zt−1)P(zt−1 |x1:t−1)dzt−1 (17.18)

=

∫
N (zt |Atzt−1, Qt)N (zt−1 |µt−1, Σt−1) dzt−1 (17.19)

= N (zt |Atµt−1, Qt + AtΣt−1A
T
t) (17.20)

, N (zt |µt|t−1, Σt|t−1) (17.21)

• In the measurement incorporation step we compute:

P(zt |x1:t) =
P(xt|zt)P(zt|x1:t−1)

P(x1:t)
(17.22)

=
N (xt |Ctzt, R)N (zt |µt|t−1, Σt|t−1)

P(x1:t)
(17.23)

= N
((

CT
t R−1

t Ct + Σ−1
t|t−1

)−1 (
CT
t R−1

t xt + Σ−1
t|t−1µt|t−1

)
,
(
CT
t R−1

t Ct + Σ−1
t|t−1

)−1
)

(17.24)

= N (zt |µt, Σt) (17.25)

It can be shown that the mean of the posterior is a weighted sum of the values predicted by the measurements
and the prior knowledge, and the covariance is smaller than either. Although the form of this equation is
quite messy. Moreover, µt and Σt contain an inversion that is of size Dz × Dz. If the world state is much
higher dimensional than the observed state, then it would be more efficient to reformulate this as an inversion
of size Dx ×Dx. To this end we define the Kalman gain as:

Kt = Σt|t−1C
T
t

(
Rt + CtΣt|t−1C

T
t

)−1
(17.26)

71

Ahmad Humayun Machine Learning Notes

We will modify the expressions for µt and Σt:

µt = µt|t−1 + Kt(xt −Ctµt|t−1) (17.27)

Σt = (I−KtCt)Σt|t−1 (17.28)

In equation 17.27 the expression in the brackets is known as the innovation, because it is the difference
between the actual measurements xt and the predicted measurements Ctµt|t−1 based on the prior estimate of
the state. It is easy to see why K is termed the Kalman gain: it determines the amount that the measurements
contribute to the new estimate in each direction in state space. If the Kalman gain is small in a given direction,
then this implies that the measurements are unreliable relative to the prior and should not influence the mean
of the state too much. If the Kalman gain is large in a given direction, then this suggests that the measurements
are more reliable than the prior and should be weighted highly (CVPrince 19.2.2).

The interpretation of Equation 17.28 is also clear: the posterior covariance is equal to the prior covariance
less a term that depends on the Kalman gain: we are always more certain about the state after incorporating
information due to the measurement, and the Kalman gain modifies how much more certain we are. When
measurements are more reliable the Kalman gain is high, and the covariance decreases more.

• In an offline setting we can look at all the data and then make predictions: P(zt |x1:T). This is called Kalman
smoothing algorithm or RTS smoother (MLPP 18.3.2). By conditioning on the past and future data, our
uncertainty will be significantly reduced. The algorithm is quite similar to forwards-backwards algorithm for
HMMs. Kalman filtering can be regarded as message passing on a graph from left to right. When the messages
have reached the end of the graph, we have successfully computed P(zT |x1:T). Now we work backwards, from
right to left, sending information from the future back to the past and then combining the two information
sources. We do this by having a backwards Kalman Gain matrix Jt:

P(zt |x1:T) =N (µt|T , Σt|T) (17.29)

µt|T = µt|t + Jt(µt+1|T − µt+1|t) (17.30)

Σt|T = Σt|t + Jt(Σt+1|T −Σt+1|t)J
T
t (17.31)

Jt , Σt|tA
T
t+1Σ

−1
t+1|t (17.32)

The algorithm can be initialized from µT |T and ΣT |T from the Kalman filter. Note that this backward pass
does not need access to the observations x1:T , saving us some memory.

• Another smoothing is fixed lag smoothing (CVPrince 19.2.6), P(zt−τ |x1:t). Basically the state vector will be
[wt−τ , . . . ,wt]

T, which fits the original Kalman filter form.

• Learning for LG-SSM (MLPP 18.4.1) here we discuss how to learn A and C. In this case we can set Q = I
without loss of generality, since an arbitrary noise covariance can be modeled appropriately by changing A.
We can also require R to be diagonal w.l.o.g.. Doing this increases numerical stability and reduces the number
of free parameters. Another constraint we can impose is that the eigenvalues of A be less than 1. This is
important because in zt = Atz1 for large t, zt will blow up in magnitude.

If we observe the hidden state sequences we can fit the model by computing the MLEs for the parameters by
solving a multivariate linear regression problem for zt+1 → zt and for zt → yt. That is, we can estimate A
by solving the least squares problem J(A) =

∑2
t=1(zt −Azt−1)2, and similarly for C. We can estimate the

system noise covariance Q from the residuals in predicting zt from zt−1, and estimate the observation noise
covariance R from the residuals in predicting yt from zt.

If we only observe the output sequence, we can compute ML or MAP estimates of the parameters using EM.

• There are two notable limitations of Kalman filter: firstly it requires the transition and the observation model
to be linear; secondly the marginal posterior P(zt |x1:t) is unimodal and can be well captured by a mean and
covariance; hence, it can only ever have one hypothesis about the position of the object (CVPrince 19.2.8).
The solution for former is given by EKF or UKF and the latter can be solved by particle filtering.

72

Machine Learning Notes Ahmad Humayun

• The Extended Kalman Filter (EKF) (MLPP 18.5.1) (CVPrince 19.3) is designed to cope with more general
transition models, where the relationship between the states at time t is an arbitrary nonlinear function g(·)
of the state of the previous time step and a stochastic contribution εt:

zt = g(zt−1) + N (0, Qt) (17.33)

where Qt is the covariance of the noise term εt as before. Similarly, it can cope with a nonlinear relationship
h(·) between the state and the measurements:

xt = h(zt) + N (0, Rt) (17.34)

where Rt is the covariance of the noise term δt as before. g(·) and h(·) are nonlinear but differentiable
functions. We linearlize these functions about the previous state estimate using a first order Taylor series
expansion and then applying the standard Kalman filter equations. Thus we approximate the stationary
non-linear dynamical system with a non-stationary linear dynamical system. There are two cases when EKF
works poorly. The first is when the prior covariance is large. In this case, the prior distribution is broad, so
we end up spending a lot of probability mass through different parts of the function that are far from the
mean, where the function has been linearized. The other setting where the EKF works poorly is when the
function is highly nonlinear near the current mean.

• The unscented Kalman filter (UKF) (MLPP 18.5.2) (CVPrince 19.4) is a derivative-free approach to
better handle non-linear function. The key intuition is this: it is easier to approximate a Gaussian than to
approximate function. So instead of performing a linear approximation to the function, and passing a Gaussian
through it, instead pass a deterministically chosen set of points, known as sigma points, through the function,
and fit a Gaussian to the resulting transformed points. This is known as the unscented transform. The
UKF uses the unscented transform twice, once to approximate passing through the transition model g and once
to approximate passing through the measurement model h. As for the EKF, the predicted state P(zt|x1:t−1)
in the UKF is a normal distribution. However, this normal distribution is a provably better approximation to
the true distribution than that provided by the EKF.

• See Section 22 for Particle Filtering.

• Many systems contain both discrete and continuous latent variables; these known as hybrid systems (MLPP
18.6). For example, the discrete variable may indicate whether a measurement sensor is faulty or not, or which
“regime” the system is in. A special case of a hybrid system is when we combine an HMM and an LG-SSM.
This is called a switching linear dynamical system (SLDS), a jump Markov linear system (JMLS).
More precisely, we have a discrete latent variable, qt ∈ {1, . . . ,K}, a continuous latent variable, zt ∈ RL, a
continuous observed response xt ∈ RD. We then assume that the continuous variables have linear Gaussian
CPDs, conditional on the discrete cases.

Unfortunately inference (i.e. state estimation) in hybrid models, including the switching LG-SSM model is
intractable. This is because of the dependency of zt on the discrete variable qt. Various approximate inference
methods have been proposed: (1) prune off low probability trajectories in the discrete tree; which is the basis
of multiple hypothesis tracking; (2) Use monte carlo sampling where we sample discrete trajectories, and
apply an analytical filter to the continuous variables conditional on a trajectory.

• Data association and multi-target tracking as an application of hybrid SSM at (MLPP 18.6.2).

18 Undirected Graphical Models (Markov Random Fields)

• (MLPP 19.1) In some domains, choosing the direction of dependence doesn’t make intuitive sense - for instance
if a graph is based on the pixel on an image, you might want to enforce correlation between two neighboring
pixels - the Markov blanket becomes un-natural (see Figure 13a). An alternative is to use an undirected

73

Ahmad Humayun Machine Learning Notes

X1 X2 X3 X4 X5

X6 X7 X8 X9 X10

X11 X12 X13 X14 X15

X16 X17 X18 X19 X20

(a) A 2d lattice given as a DAG. X8 is independent of all
other (black) nodes given its Markov blanket, which includes
its parents (blue), children (green), and co-parents (red).

X1 X2 X3 X4 X5

X6 X7 X8 X9 X10

X11 X12 X13 X14 X15

X16 X17 X18 X19 X20

(b) Same model as left given as a UGM. The dotted X8 node
is independent of the other black nodes given its neighbors
(blue).

Figure 13

graphical model (UGM), also called a Markov Random Field (MRF) or Markov Network. In this
case we don’t need to specify the direction of the edges, which is more natural for some problems like image
analysis and spatial statistics. An example is given in Figure 13b; where the Markov blanket for each node is
just its nearest neighbors - which in case of X8 are {X3, X7, X9, X13}.

• The main advantages of a UGM over a DGM are: (1) the model is symmetric because of no directional edges
- which is useful for spatial problems; (2) discriminative UGM (Conditional Random Fields), which define the
conditional densities of the form P(y|x), work better than discriminative DGMs.

• The main disadvantage of a UGM over a DGM are: (1) the parameters are less interpretable and less modular;
(2) parameter estimation is more expensive.

• UGMs define conditional-independence (CI) relationships via simple graph separation as follows: for sets of
nodes A, B, and C, we say xA ⊥G xB |xC iff C separates A from B in graph G. This means when we remove
all the nodes in C, if there are no paths connecting any node in A to any node in B, then the CI property
holds. This called the global Markov property for UGMs (MLPP 19.2.1). An example is in Figure 14b
where we have {1, 2} ⊥ {6, 7} | {3, 4, 5}.

• The smallest set of nodes that renders a node t conditionally independent of all the other nodes in the graph is
called t’s Markov blanket; we will denote this as mb(t). Formally the Markov blanket satisfies the following
property:

t ⊥ V\cl(t) |mb(t) (18.1)

where cl(t) , mb(t)∪ {t} is the closure of node t. It can be shown that in a UGM, a node’s Markov blanket
is its set of immediate neighbors. This is called the undirected local Markov property. For instance in
Figure 14b, we have mb(5) = {2, 3, 4, 6, 7}. From the local property, we can easily see that two nodes are
conditionally independent given the rest if there is no direct edge between them. This is called the pairwise
Markov property. In symbols this is written as:

s ⊥ t | V\{s, t} ⇐⇒ (s, t) 6∈ E (18.2)

Using the three Markov properities we can derive the following CI properties (amongst others) from the UGM
in Figure 14b:

– Pairwise: 1 ⊥ 7 | rest

74

Machine Learning Notes Ahmad Humayun

– Local: 1 ⊥ rest | {2, 3}
– Global: {1, 2} ⊥ {6, 7} | {3, 4, 5}

It is obvious that the global Markov implies local Markov which implies pairwise Markov. What is less obvious
is that pairwise implies global if P(x) > 0, and hence all these Markov properties are essentially the same. The
importance of this is that it empirically is more easier to assess pairwise CI; which can be used to construct
a graph from which global CI statements can be extracted.

• How do we determine CI relationships for a DGM using a UGM (MLPP 19.2.2)? It is tempting to simply
convert the DGM to a UGM by dropping the orientation of the edges, but this is clearly incorrect, since a
v-structure A→ B ← C has quite different CI properties than the corresponding undirected chain A−B−C.
The latter graph incorrectly states that A ⊥ C |B. To avoid such incorrect CI statements, we can add edges
between the “unmarried” parents A and C, and then drop the arrows from the edges, forming (in this case)
a fully connected undirected graph. This process is called moralization. Figure 14b gives an example where
we had to interconnect 2 and 3 because they had a common child, and we had to interconnect 4, 5, and 6
because they had a common child 7.

• Unfortunately moralization loses some CI information, and therefore we cannot reconstruct the original DGM
from a moralized UGM. For instance in Figure 14a, using d-separation we see that 4 ⊥ 5 | 2; but adding a
moralization arc 4− 5 loses this fact. Note that this was because we needed to insert arc 4− 5 because of the
common child 7. This suggests another technique to determine A ⊥ B |C. We first form an ancestral graph
G with respect to U , A∪B ∪C - which means G has only all the nodes in U and all the ancestors of U . We
then moralize this ancestral graph, and apply the simple graph separation rules for UGMs. For Figure 14a, if
U = {2, 4, 5}, the graph G only has nodes 1, 2, 3, 4, 5, which if moralized will show that 4 ⊥ 5 | 2.

• Let’s consider a perfect map of p I(G) = I(p) (see Section 9) i.e. G exactly makes all (and only) the CI
assumptions as those given by p. The natural question is that are DGMs or UGMs are more powerful in
representing CI assumptions. It turns out that both DGMs and UGMs are perfect maps for different sets
of distributions. As an example for CI relationships which can be represented by DGM but not by UGM is
of the v-structure A → C ← B. This asserts that A ⊥ B, and A 6⊥ B |C. Converting this to a UGM with
A− C − B, it asserts A ⊥ B |C and A 6⊥ B which is incorrect. In fact there is no UGM which can precisely
represent all and only the two CI statements encoded in the v-structure. In general, CI properties in a UGMs
are monotonic, in the following sense: if A ⊥ B |C then A ⊥ B | (C ∪ D). But, in DGMs, CI properties
can be non-monotonic, since conditioning on extra variables can eliminate conditional independencies due to
explaining away.

As an example of some CI relationships that can be perfectly modeled by a UGM but not by a DGM, is a
4-cycle graph {(A−B), (B −C), (C −D), (D,A)}. There is no DGM which can represent all (and only) CI
statements encoded by this UGM.

Some distributions can be perfectly mapped to either UGMs or DGMs - these resulting graphs are called
decomposable or chordal. Roughly speaking this means means that if we collapse together all the variables
in each maximal clique, to make “mega-variables,” the resulting graph will be a tree.

• Although the CI properties of UGM are simpler than DGMs, representing the joint distribution of a UGM is
less natural than a DGM (MLPP 19.3).

• (MLPP 19.3.1) Since there is no topological ordering in a UGM, we can’t use the chain rule to represent
P(y). So instead of associating CPDs with each node, we associate potential functions or factors with
each maximal clique in the graph. We will denote the potential function for clique c by ψc(yc|θc). The
potential function can be any non-negative function of its arguments. The joint distribution is then defined
to be proportional to the product of clique potentials. Rather surprisingly, one can show that any positive
distribution whose CI properties can be represented by a UGM can be represented in this way. This theorem
follows:

75

Ahmad Humayun Machine Learning Notes

1

2

3

4

5

6

7

(a) A DGM

1

2

3

4

5

6

7

(b) Moralized version of Figure 14a represented as a UGM.

Figure 14

Theorem 18.1. Hammersley-Clifford Theorem: A positive distribution P(y) > 0 satisfies the CI properties
of an undirected graph G iff p can be represented as a product of factors, one per maximal clique i.e.:

P(y |θ) =
1

Z(θ)

∏
c∈C

ψc(yc|θc) (18.3)

where C is the set of all maximal cliques of G, and Z(θ) is the partition function given by:

Z(θ) ,
∑
y

∏
c∈C

ψc(yc|θc) (18.4)

Note that the partition function is what ensures that the overall distribution sums to 1.

For instance for the MRF given in Figure 14b, if p satisfies the CI properties of this graph then we can write
p as follows:

P(y |θ) =
1

z(θ)
ψ123(y1, y2, y3)ψ235(y2, y3, y5)ψ245(y2, y4, y5)ψ356(y3, y5, y6)ψ4567(y4, y5, y6, y7) (18.5)

• We can equivalently write Equation 18.3 as a model known as the Gibbs distribution which is as follows:

P(y|θ) =
1

Z(θ)
exp

(
−
∑
c∈C

E(yc|θc)

)
(18.6)

where E(yc) > 0 is the energy associated with the variables in clique c. E(·) is also sometimes known as the
cost function. We can convert this to a UGM by defining:

ψc(yc|θc) = exp (−E(yc|θc)) (18.7)

Here high probability states correspond to low energy configurations. Models of this form are known as
energy based models, and are commonly used in physics and biochemistry.

• Note that we are free to restrict the parameterization to the edges of the graph, rather than the maximal
cliques. This is called pairwise MRF. For Figure 14b, we get:

P(y |θ) =
1

z(θ)
ψ12(y1, y2)ψ13(y1, y3)ψ23(y2, y3) ψ25(y2, y5)ψ35(y3, y5)

ψ24(y2, y4)ψ25(y2, y5)ψ45(y4, y5) ψ35(y3, y5)ψ36(y3, y6)ψ56(y5, y6)

ψ45(y4, y5)ψ46(y4, y6)ψ47(y4, y7)ψ56(y5, y6)ψ57(y5, y7)ψ67(y6, y7) (18.8)

∝
∏
s∼t

ψst(ys, yt) (18.9)

This form is widely used because of its simplicity - but it does not generalize to all cases.

76

Machine Learning Notes Ahmad Humayun

• If the variables are discrete, we can represent the potential or energy functions as tables of (non-negative)
numbers, just as we did with CPTs. However, the potentials are not probabilities. Rather, they represent
the relative “compatibility” between the different assignments to the potential. A more general approach is
to define the log potentials as a linear function for the parameters (using a Gibbs distribution):

logψc(yc|θc) , φc(yc)
Tθc (18.10)

where φc(yc) is a feature vector derived from the values of the variables yc. The resulting log probability has
the form:

logP(y|θ) =
∑
c

φc(yc)
Tθc − logZ(θ) (18.11)

This is also known as a maximum entropy or a log-linear model.

For example if we consider an MRF where the number of states are K, then for each edge, we associate a
feature vector of length K2 as follows:

φst = [. . . , I(ys = j, yt = k), . . .] (18.12)

If we have a weight for each feature, we can convert this into a K ×K potential function as follows:

ψst(ys = j, yt = k) = exp

([
θTstφst

]
jk

)
= exp(θst(j, k)) (18.13)

So we see that we can easily represent tabular potentials using a log-linear form.

• Examples of MRFs:

– The Ising Model (MLPP 19.4.1) is an example of an binary MRF that arose from statistical physics.
We create a 2D or 3D lattice of the form given in Figure 13b. We define the following pairwise clique
potential:

ψst(ys, yt) =

[
ewst e−wst

e−wst ewst

]
(18.14)

Here wst is the coupling strength between nodes s and t. If two nodes are not connected in the graph,
wst = 0. Also, we take that weight matrix W is symmetric, so wst = wts. Often we assume all edges
have the same strength, so wst = J (assuming that the edge exists). If all the weights are positive, J > 0,
the model will encourage neighboring nodes to be in the same state. This is an example of an associate
Markov network. If the weights are sufficiently strong, the corresponding probability distribution will
have two modes, corresponding to the all 1’s state and the all 0’s state. These are called the ground
states of the system.

If all of the weights are negative, J < 0, then the states want to be different from their neighbors; and
results in a frustrated system, in which not all the constraints can be satisfied at the same time. The
corresponding probability distribution will have multiple modes. Interestingly, computing the partition
function Z(J) can be done in polynomial time for associative Markov networks, but is NP-hard in general.

There is also an interesting relationship between Ising models and Gaussian graphical models.

– A Hopfield network (MLPP 19.4.2) is a fully connected Ising model with a symmetric weight matrix,
W = WT. These weights, can be learned from training data using (approximate) maximum likelihood.
The main application of Hopfield networks is as an associative memory or content addressable memory.
The idea is this: suppose we train on a set of fully observed bit vectors, corresponding to patterns we
want to memorize. Then, at test time, we present a partial pattern to the network. We would like to
estimate the missing variables; this is called pattern completion. Since exact inference is intractable in
this model, it is standard to use a coordinate descent algorithm known as iterative conditional

77

Ahmad Humayun Machine Learning Notes

y7

x7

y8

x8

y9

x9

y4

x4

y5

x5

y6

x6

y1

x1

y2

x2

y3

x3

(a) Potts model: A grid-structured MRF with local evidence
nodes. Here the measurements / observed data are condi-
tionally dependent on y (red edges). Note that the variable
y5 contributes to the cliques c45, c25, c56, and c58.

y7

x7

y8

x8

y9

x9

y4

x4

y5

x5

y6

x6

y1

x1

y2

x2

y3

x3

(b) Conditional Random Field (CRF), where the posterior
probability of labels y is an MRF for fixed data x.

Figure 15

modes (ICM), which just sets each node to its most likely (lowest energy) state, given all its neighbors.
A Boltzmann machine generalizes the Hopfield / Ising model by including some hidden nodes, which
makes the model representationally more powerful. Inference in such models often uses Gibbs sampling,
which is a stochastic version of ICM.

– You can generalize the Ising model to multiple discrete states, yt ∈ {1, 2, . . . ,K}. For example if K = 3,
we use a potential function of the following form:

ψst(yst)(ys, yt) =

ewst e0 e0

e0 ewst e0

e0 e0 ewst

 (18.15)

This is called the Potts model (MLPP 19.4.3). As before, we often assume tied weights of the form
wst = J . If J > 0, then neighboring nodes are encouraged to have the same label. For a small value of
J we see many small clusters and for large values we see large clusters. There is a critical value of J ,
for which there is a mix of small and large clusters. This rapid change in the behavior as we vary the
parameter is called a phase transition.

The potts model can be used as a prior for image segmentation, since it says that neighboring pixels are
likely to have the same discrete label and hence belong to the same segment. We can combine this prior
with a likelihood term as follows:

P(y,x |θ) = P(y | J)
∏
s

P(xs|ys, θ) =

[
1

Z(J)

∏
s∼t

ψ(ys, yt; J)

]∏
s

P(xs|ys, θ) (18.16)

where P(xs|ys = k, θ) is the probability of observing pixel xs given that the corresponding segment
belong to class k. The corresponding graphical model is a mix of undirected and directed edged as shown
in Figure 15a. The undirected 2d lattice represents the prior P(y); in addition, there are directed edges
from ys to its corresponding xs, representing local evidence. Technically speaking this combination
of an undirected and directed graph is called a chain graph. However, since xs nodes are observed
they can be “absorbed” into the model, thus leaving behind an undirected “backbone.” The model is a
2d analog of an HMM and could be a partially observed MRF. As in an HMM, the goal is to perform
posterior inference i.e. to compute P(y |x, θ). Unfortunately the 2d case is provably much harder than
the 1d case.

78

Machine Learning Notes Ahmad Humayun

– Gaussian MRFs (MLPP 19.4.4).

– Markov Logic Networks (MLPP 19.4.5) is a way to combine first order logic with probabilistic
measurement - where logic rules are used to define potential functions in an unrolled UGM.

• An important question is whether ML or MAP parameter estimation for MRFs can be performed. This
happens to be quite computationally expensive. For this reason, it is rare to perform Bayesian inference for
the parameters of MRFs.

• Training maxent models for parameter learning (MLPP 19.5.1): Consider an MRF in log-linear form:

P(y |θ) =
1

Z(θ)
exp

(∑
c

θTcφc(y)

)
(18.17)

where c indexes cliques. The scaled log-likelihood is given by:

`(θ) ,
1

N

∑
i

logP(yi|θ) =
1

N

∑
i

[∑
c

θTcφc(yi)− logZ(θ)

]
(18.18)

Since MRFs are in the exponential family, we know that this function is convex in θ so it has a unique global
maximum which we find using gradient-based optimizers. In particular the derivative for the weights of a
particular clique, c, given by:

∂`

∂θc
=

1

N

∑
i

[
φc(yi)−

∂

∂θc
logZ(θ)

]
(18.19)

Here, we can show that ∂
∂θc

logZ(θ) = E[φc(y) |θ] =
∑

y φc(y)P(y |θ). This would let us learn parameters
when you have observed all the data. There are also methods when you have partially observed data (MLPP
19.5.2).

• When fitting a UGM there is (in general) no closed form solution for the ML or the MAP estimate of
the parameters, so we need to use gradient-based optimizers. The gradient requires inference. In models
where inference is intractable, learning also becomes intractable. We can combine approximate inference with
(gradient based) learning, but results are not always guaranteed to be good depending on which inference
algorithm is used. This has motivated various computationallly faster alternatives to ML/MAP estimation,
and a few examples are:

– An alternative to MLE is to maximize the pseudo likelihood, which is defined as follows:

`PL(θ) =
1

N

N∑
i=1

D∑
d=1

logP(yid|yi,−d,θ) (18.20)

That is we optimizae the product of the full conditionals, also known as the composite likelihood.
Compare this to the object for maximum likelihood in Equation 18.18. Here, in the case of Gaussian
MRFs, PL is equivalent to ML, but this is not true in general. In the PL approach we learn to predict
each node, given all of its neighbors. This objective is generally fast to compute since each full conditional
P(yid|yi,−d,θ) only requires summing over the states of a single node, yid, in order to compute the local
normalization constant. The PL approach is similar to fitting each full conditional separately, except
that, in PL, the parameters are tied between adjacent nodes.

– For a fully or partially observed MRF we can approximate model expectations (E[φc(y) |θ]) using Monte
Carlo sampling. We can combine this with stochastic gradient descent (Section 6), which takes samples
from the empirical distribution. By some adjustments on where to start MCMC, we can get exact MLE
of the parameters modulo MCMC errors. This is called stochastic maximum likelihood (SML)
(MLPP 19.5.5) .

79

Ahmad Humayun Machine Learning Notes

– MRFs require a good set of features. One unsupervised way to learn such features, known as feature
induction, is to start with a base set if features, and then to continually create new feature combinations
out of old ones, greedily adding the best ones to the model (MLPP 19.5.6).

– Iterative Proportional Fitting (IPF) (MLPP 19.5.7) is a fixed point algorithm for enforcing the
moment matching constraints and is guaranteed to converge to the global optimum.

• We saw in Equation 18.3 (and in the Potts model - Equation 18.16) that MRF is a generative model. If we
now condition on the data (i.e. we assume is fixed), then we can use the relation P(y |x) ∝ P(y, x) to write:

P(y |x, w) =
1

Z(x,w)

∏
c

ψc(yc |x,w) (18.21)

This is called a Conditional Random Field (CRF). An example can be seen in Figure 15b. There are two
sets of cliques in this model: (1) neighboring labels; (2) each label to its associated input / measurement. It
can be thought of as a structured output extension of logistic regression, where we model the correlation
amongst the output labels conditioned on the input features. We will usually assume a log-linear representation
of the potentials:

ψc(yc |x,w) = exp
(
wT
c φ(x, yc)

)
(18.22)

where φ(x, yc) us a feature vector derived from the global inputs x and the local set of labels yc.

• The advantages of CRF over MRF: (1) same advantages of discriminative classifiers over generative classifiers
- instead of spending resources on modeling things that we always observe, we can focus on modeling what
we care about, namely the distribution of labels given the data; (2) we can make the potentials of the model
data-dependent - for instance we can “turn-off” the label smoothing between two neighboring nodes i and j
if there is an observed discontinuity in the image intensity between i and j; (3) The graph structure itself can
change depending on the input.

• The disadvantages of CRF over MRF is they require labeled training data, and they are slower to train. This
is analogous to the strengths and weaknesses of logistic regression vs näıve Bayes.

• (MLPP 19.6.1) One of the widely used CRFs uses a chain-structured model. But, in the case of HMMs, given
in Equation 16.10, the model was written in a generative form:

P(y1:T , x1:T |w) =

T∏
t=1

P(yt | yt−1, w)P(xt | yt, w) (18.23)

where the first term, P(y1) is excluded for simplicity. We need to replace this by a discriminative model to be
used as an CRF. One way to do this is to reverse the arrows, which would now go from xt to yt. This defines
a directed discriminative model of the form:

P(y1:T |x1:T , w) =
∏
t

P(yt | yt−1, xt, w) (18.24)

If we break x in a set of local and global features, this is called a maximum entropy Markov model
(MEMM). This suffers from label bias problem since information cannot flow from xt back to yt−1, because
they are v-separated by the v-structure yt. This can be fixed by a discriminative chain-structured undirected
CRF, with a model of this form:

P(y |x, w) =
1

Z(x, w)

T∏
t=1

ψ(yt |x, w)

T−1∏
t=1

ψ(yt, yt+1 |x,w) (18.25)

80

Machine Learning Notes Ahmad Humayun

This no longer has the label bias problem because yt does not block the information from xt from reaching
to other nodes yt′ . The label bias problem in MEMMs occurs because directed models locally normalized,
meaning each CPD sums to 1. By contrast, MRFs and CRFs are globally normalized, which means that
local factors do not need to sum to 1, since the partition function Z, which sums over all joint configurations,
will ensure the model defines a valid distribution. However the price we pay is that we do not have a valid
distribution over y until we have seen the whole sequence, because only then we can normalize. Consequently,
CRFs are not as useful as DGMs (whether discriminative or generative) for online or real-time inference.
Furthermore, the fact that Z depends on all nodes, and hence all their parameters, makes CRFs much slower
to train than DGMs.

• CRF Parameter Training (MLPP 19.6.3): We can modify the gradient based optimization of MRFs in
Section 18 to the CRF case in straightforward way:

`(w) ,
1

N

∑
i

logP(yi |xi, w) =
1

N

∑
i

[∑
c

wT
c φc(yi, xi)− logZ(w, xi)

]
(18.26)

and the gradient becomes:

∂`

∂wc
=

1

N

∑
i

[
φc(yi, xi) −

∂

∂wc
logZ(w, xi)

]
(18.27)

=
1

N

∑
i

[φc(yi, xi) − E [φc(yi, xi)]] (18.28)

Note that we now have to perform inference for every single training case inside teach gradient step, which is
O(N) times slower than the MRF case. This is because the partition function depends on the inputs xi.

In most CRFs. the size of the graph structure can vary. Hence we need to use parameter tying to ensure we
can define a distribution of arbitrary size. In the pairwise case, we can write the model as follows:

P(y |x, w) =
1

Z(w, x)
exp(wTφ(y, x)) (18.29)

where w = [wn, we] are the node and edge parameters, and:

φ(y, x) ,

[∑
t

φt(yt,x),
∑
s∼t

φst(ys, yt,x)

]
(18.30)

are the summed node and edge features (these are the sufficient statistics). The gradient expression is
easily modified to handle this case. In practice it is more important to use a prior/regularization to prevent
overfitting. If we use `1 regularization for edge weights we to learn sparse graph structure, and `2 for the
node weights wn, the likelihood function would become:

`(w) ,
1

N

∑
i

logP(yi |xi, w)− λ1‖we‖1 − λ2‖wn‖22 (18.31)

Unfortunately, the optimization algorithms are more complicated when we use `1 (see Section 12), although
the problem is still convex. To handle large datasets, we can use SGD (see Section 6). To handle cases where
exact inference is intractable, we can use SML (see Section 18), which combines MCMC inference with SGD
parameter learning.

• Training a CRF requires inference, in order to compute the expected sufficient statistics needed to evaluate
the gradient. For certain models, computing a joint MAP estimate of the states is provably simpler than
computing marginals. Here we discuss a way to train structured output classifiers that leverages the existence

81

Ahmad Humayun Machine Learning Notes

of fast MAP solvers. (to differentiate this from MAP estimation of parameters, we will call MAP estimation
of states as decoding). These methods are known as Structural SVM (SSVM) (MLPP 19.7). Up until
now we have looked at fitting models using MAP parameter estimation i.e., by minimizing functions of the
form:

RMAP(w) = − logP(w)−
N∑
i=1

logP(yi |xi, w) (18.32)

However at test time, we pick the label so as to minimize the posterior expected loss:

ŷ(x |w) = arg min
ŷ

∑
y

L(y, ŷ)P(y |x, w) (18.33)

where L(y∗, ŷ) is the loss we incur when we estimate ŷ but the truth is y∗. It therefore seems reasonable to take
the loss function into account when performing parameter estimation. Let us define L(yi, y) = logL(yi, y).
Since the objective was had to optimize, because the loss is not differentiable, we construct a convex upper
bound instead. This gives us SSVM, which minimizes the posterior expected loss on the training set by:

RSSVM(w) =
1

2
‖w‖2 + C

N∑
i=1

[
max

y
{L(yi, y) + wTφ(xi, y)} − wTφ(xi, yi)

]
(18.34)

• Even though the SSVM objectives are simple quadratic programs, they have O(N |Y) constraints. This is
intractable, since the domain of y, Y is usually exponentially large.

• To find the weights w in SSVM, we use the cutting plane algorithm (MLPP 19.7.3). The goal of this
algorithm is minimize a convex not-necessarily smooth function L(w). The idea is to incrementally construct
a lower approximation L(t)(w). At each iteration, minimize the latter to obtain wt and add a cutting plane at
that point. We start with an initial guess w and no constraints. At each iteration, we then do the following:
for each example i, we find the “most violated” constraint involving xi and ŷi. If the loss-augmented margin
violation exceeds the current value of the slack terms ξi by more than ε, we add ŷi to the working set of
constraints for the training caseWi, and then solve the resulting QP to find the new w, ξ. See Figure (MLPP
19.21). Since at each step we only add one new constraint, we can warm-start the QP solver.

19 Exact inference for Graphical Models

• We saw in Section 6 the forward-backwards algorithm can exactly compute the posterior marginals P(yt |xt,θ)
in any chain-structured graphical model, where y are the hidden variables (assumed discrete) and x are the
visible variables. This algorithm can be modified to compute posterior mode and posterior samples. In
Section 17 we saw Kalman smoothing which is a similar algorithm for linear-Gaussian chains. Our goal now
is to generalize these exact inference algorithms for arbitrary graphs. These methods apply to both directed
and undirected models.

• Belief Propagation (BP) (also called sum-product algorithm) (MLPP 20.2.1) is a generalization of
forwards-backwards algorithm (which was originally for chains) to trees. We initially assume that the model
is a pairwise MRF (or CRF), i.e.:

P(y |x) =
1

Z(x)

∏
s∈V

ψs(ys)
∏

(s,t)∈E

ψs,t(ys, yt) (19.1)

where ψs is the local evidence for node s, and ψst is the potential for edge s − t. One way to implement
BP for undirected trees is as follows. (1) Pick an arbitrary node and call it the root r - and imagine you

82

Machine Learning Notes Ahmad Humayun

s1 s2

s

u1 u2

u

t

r

x−st

(a) Collect-to-root phase

s1 s2

s

u1 u2

u

t

r
x+
st

(b) Distribute-from-root r phase

Figure 16: Belief Propagation: Message passing on a tree

picked the graph by r and all the nodes are dangling below it - and gives us parent child relationships. (2)
We send messages up from the leaves to the root (the collect evidence phase, and (3) then send messages
back down from the root (the distribute evidence phase), in a manner analogous to forwards-backwards
on chains. Suppose we want to compute the belief state at node t, as illustrated in Figure 16a. We will
initially condition the belief only on evidence that is at or below t in the graph i.e., we want to compute
bel−t (yt) , P(yt|x−t), where x−t are all the observations / evidence at or below node t in the tree. We will
call this a “bottom-up belief state”. Suppose, by induction, that we have computed “messages” from t’s
two children, summarizing what they think t should know about the evidence in their subtrees, i.e. we have
computed m−s→t(yt) = P(yt|x−st) where x−st is all the evidence on the downstream side of the s− t edge, and
similarly we have computed m−u→t(yt). Then we can compute the bottom-up belief state at t as follows:

bel−t (yt) , P(yt|x−t) =
1

Zt
ψt(yt)

∏
c∈ch(t)

m−c→t(yt) (19.2)

where ch(t) = {s, u} in this case. Also ψt(yt) ∝ P(yt|xt) is proportional to the local evidence for node t, and
Zt is the local normalization constant. In words, we multiply all the incoming messages from our children,
as well as the incoming message from our local evidence, and then normalize. Now how do we compute
the messages m�→�(yt) themselves? Consider computing mt

s→t(yt), whre s is one t’s children. Assume by
recursion, that we have already computed bel−s (ys). Then we can compute the message as follows:

m−s→t(yt) =
∑
ys

ψst(ys, yt) bel
−
s (ys) (19.3)

Essentially we convert beliefs about ys into beliefs about yt by using the edge potential ψst. We continue in
this way up the tree until we reach the root. Once at the root, we have “seen” all the evidence in the tree,
so we can compute our local belief state at the root belr(yr). This completes the end of the upwards pass,
which is analogous to the forwards pass in an HMM. If we can compute all normalization constants Zt, we
can compute the probability of the evidence: P(x) =

∏
t Zt.

We can now pass messages down from the root. For example, consider node s, with parent t, as shown
in Figure 16b. To compute the belief state for s, we need to combine the bottom-up belief for s to-
gether with the a top-down message from t, which summarizes all the information in the reset of the graph
m+
t→s(ys) , P(yt |x+

st), where x+
st is all the evidence on the upstream (root) side of the s− t edge, as shown

in the figure. We then have:

bels(ys) , P(xs|y) ∝ bel−s (ys)
∏

p∈pa(s)

m+
p→s(ys) (19.4)

83

Ahmad Humayun Machine Learning Notes

where pa(s) = t in this case. How do we compute these downward messages? For example, consider the
message from t to s. Suppose t’s parent is r, and t’s children are s and u, as shown in Figure 16b. We want
to include in m+

t→s all the information that t has received, except for information that s sent it:

m+
t→s(ys) , P(ys|x+

st) =
∑
yt

ψst(ys, yt)
belt(yt)

m−s→t(yt)
(19.5)

Rather than dividing out the message sent up to t, we can plug in the equation of belt to get:

m+
t→s(ys) =

∑
yt

ψst(ys, yt)ψt(yt)
∏

c∈ch(t) \ s

m−c→t(yt)
∏

p∈pa(t)

m+
p→t(yt) (19.6)

In other words, we multiply together all the messages coming into t from all nodes except for the recipient s,
combine together, and then pass through the edge potential ψst. The summation symbol indicates that we
are summing over all the states of of node yt. In the case of a chain, t only has one child s and one parent p,
and hence both products are replaced simply by m+

p→t(yt).

• The version of BP in which we use division is called belief updating, which is analogous to Kalman smoothing
(see Section 17): the top-down messages m+ depend on the bottom-up messages m− as well as the filtered
belief state belt. In the other version where we multiply all-but-one of the messages is called sum-product,
which is analogous to how we formulated the backwards algorithm (see Section 6), where in case of a chain,
the top-down (backward) messages m+ are completely independent of the bottom-up (forward) messages m−,
and do not depend on the filtered belief states.

• For a parallel implementation (MLPP 20.2.2) all nodes receive messages from their neighbors in parallel, they
then update their belief states, and finally they send new messages back out to their neighbors. The process
repeats until convergence. This kind of computing method is called a systolic array.

More precisely, we initialize all messages to all 1’s vector. Then, in parallel, each node absorbs messages from
all its neighbors using:

belt(yt) ∝ ψt(yt)
∏

s∈nbr(t)

ms→t(yt) (19.7)

Then, in parallel, each node sends messages to each of its neighbors:

mt→s(ys) =
∑
yt

ψt(yt)ψst(ys, yt) ∏
u∈nbr(t)\s

mu→t(yt)

 (19.8)

The mt→s message is computed by multiplying together all incoming messages, except the one sent by the
recipient, and then passing through ψst potential. See Algorithm 6 for pseudo-code. An iteration T of the
algorithm, belt(yt) represents the posterior belief of ys conditioned on the evidence that is T steps away in
the graph. After D(G) steps, where D(G) is the diameter, of the graph (the largest distance between any
two pairs of nodes), every node has obtained information from all the other nodes. Its local belief state is
then the correct posterior marginal. Since the diameter of a tree is at most |V| − 1, the algorithm converges
in linear number of steps.

• Gaussian belief propagation (MLPP 20.2.3).

• (MLPP 20.2.4.1) It is possible to devise a max-product version of the BP algorithm by replacing the
∑

operator with the max operator. We can then compute the local MAP marginal of each node. However if
there are ties, this might not be globally consistent (see Section 6).

84

Machine Learning Notes Ahmad Humayun

C

D I

G

(a) Example DGM

C

D I

G

(b) Moralized version of Figure 17a

Figure 17

• We have seen how BP can be used to compute exact marginals on chains and trees. But how to compute
them on any kind of graph? Here we discuss the variable elimination (VE) algorithm.

The DGM in Figure 17a is given by: P(C,D, I,G) = P(C)P(D|C)P(I)P(G|C,D). We can moralize this
graph by adding edge D − I, and dropping the arrows. Even though this is not a necessary step but it
will give a more unified presentation (variable elimination works both on DGMs and UGMs/MRFs). The
computational complexity of solving is the same before or after the moralization. Now we define a potential
or factor for every CPD, giving P(C,D, I,G) = ψC(C)ψD(D,C)ψI(I)ψG(G,C,D). Since all the potentials
are locally normalized, since they are CPDs, there is no need for a global normalization, so Z = 1. The
corresponding undirected graph is shown in Figure 17b. Considering all variables were binary, what if we
wanted to compute P(G = 1), the marginal probability of having G = 1. We could simply sum over the
rest of the variables: P(G) =

∑
C

∑
D

∑
I P(C,D, I,G). However this takes O(23) time which will grow

exponentially with the number of variables. The key idea behind variable elimination is to push sums inside
products. In our example it would be:

P(G) =
∑
C,D,I

P(C,D, I,G) =
∑
C,D,I

ψC(C)ψD(D,C)ψI(I)ψG(G,C,D)

=
∑
C

(
ψC(C)

∑
D

(
ψD(D,C)

∑
I

(
ψI(I)ψG(G,C,D)

)))

We can evaluate this expression right to left. First we multiply together all terms in the scope of a sum and
create a temporary factor. Then we marginalize the variable over which we are summing to get a new factor:

P(G) =
∑
C

(
ψC(C)

∑
D

(
ψD(D,C)

∑
I

(
ψI(I)ψG(G,C,D)

)
︸ ︷︷ ︸

τ1(G,C,D)

))

=
∑
C

(
ψC(C)

∑
D

(
ψD(D,C)

∑
I

τ ′1(I,G,C,D)︸ ︷︷ ︸
τ1(G,C,D)

))
replacement with temporary factor

=
∑
C

(
ψC(C)

∑
D

(
ψD(D,C)τ1(G,C,D)

)
︸ ︷︷ ︸

τ2(G,C)

)

=
∑
C

(
ψC(C)τ2(G,C)

)
= τ3(G)

85

Ahmad Humayun Machine Learning Notes

Furthermore if we need to compute a conditional, we can take a ratio of two marginals, where the visible
variables have been clamped to their known values (and hence don’t need to be summed over). For instance:

P(G = g | I = 1) = P(G=g I=1)∑′
g P(G=g′ I=1)

. In general:

P(yq |yv) =

∑
yh
P(yh,yq,yv)∑

yh

∑
y′q
P(yh,y′q,yv)

(19.9)

The normalization constant in the denominator, P(yv) us called the probability of the evidence. If we
want to use VE for a MAP estimate y∗ = arg maxy

∏
c ψc(yc), we can just replace the sums with max. Like

Viterbi (see Section 6) we need to have a traceback step. In general VE can be applied to any commutative
semi-ring. This is a set K with two binary operations + and × with the axioms (1) + is commutative and as-
sociative, and k+0 = k; (2) × is commutative and associative, and k+1 = k; and (3) (a×b)+(a×c) = a×(b+c)
holds for all triples (a, b, c) ∈ K.

• Note that the running time of VE is exponential in the size of the largest factor, since we have to sum over
all of the corresponding variables (MLPP 20.3.2). Hence, the elimination order, the order in which we
carry out summations, is extremely important. We can see the size of the largest factor graphically. When
we eliminate a variable yt, we add a fill-in edge between all the variables that share the factor yt (to reflect
the temporary factor τ ′t). The temporary factors generated by VE correspond to maximal cliques in graph
G(π) where π is the elimination ordering. Given the set of maximal cliques C, and K states for each variable,
the time complexity of VE is:∑

c∈C(G(π))

K |c| (19.10)

Hence we would like to find an elimination ordering where the size of largest clique in the induced graph
is the smallest possible (the treewidth). The problem of finding the best possible elimination ordering is
NP-hard. But in case of chains and trees, we can make an ordering which doesn’t induce new edges. For
chains we should work forward or backward in time; for trees we should work from leaves to the root. In the
case of chains and trees VE takes O(V K2) time. This is one reason why Markov chains and trees are used so
often. Unfortunately for other graphs, the treewidth can be huge. For instance for a 2D lattice it would be
O(min{m,n}), making the running time O(Kmin{m,n}).

• Another weakness of VE is apparent when you want to compute multiple queries on the same evidence
(MLPP 20.3.3). For instance computing all marginals {P(y1|x), . . . ,P(yT |x)}. If we had to do this on a chain
structure, the forwards-backwards algorithm will reuse messages computed on the forward pass. In trees, BP
would do something similar by reusing messages for compute marginals on one node to compute marginals
on another node. VE on the other hand does not reuse such messages, making it slower.

• Junction Tree Algorithm (JTA) (MLPP 20.4.1) generalizes BP from trees to arbitrary graphs for exact
inference. It works for variables with discrete distributions and Gaussian distributions.

• The basic idea behind JTA is this. WE first run the VE algorithm “symbolically”, adding fill-in edges as we
go, according to the given elimination ordering. The resulting graph will be a chordal graph, which means
that every undirected cycle X1 −X2 · · ·Xk −X1 of length k ≥ 4 has a chord i.e. an edge connects Xi, Xj for
all non-adjacent node i, j in the cycle. The largest loop in a chordal graph is of length 3. For this reason they
are sometimes called triangulated. Having created a chordal graph, we can extract the maximal cliques.
Note that if the original graphical model was already chordal, the elimination process would not add any
extra fill-in edges (assuming the optimal elimination ordering was used). We call such models decomposable
since they break into little pieces defined by the cliques. The cliques of a chordal graph can be arranged into
a special kind of tree known as junction tree. The nodes of the junction tree contain the variables in a
clique, whereas edges contain the variables shared between two cliques. The junction tee enjoys the running
intersection property (RIP), which means that any subset of nodes containing a given variable forms a

86

Machine Learning Notes Ahmad Humayun

connected component. One can show that if a tree that satisfies RIP, then applying BP to this tree (as given
below) will return the exact values of P(yc|x) for each node c in the tree (i.e. clique in the induced graph).
From this, we can easily extract the node and edge marginals, P(yt|x) and P(ys, yt|x) from the original
model, by marginalizing the clique distributions.

• Once the junction tree is constructed we can do inference, in a process similar to BP on a tree (MLPP 20.4.2).
Here we will discuss the belief updating (also known as the Hugin) form of the algorithm. We assume the
original model has the form P(yx) = 1

Z

∏
c∈C(G) ψc(yc) where C(G) are the cliques of the original graph. On

the other hand the tree defines a distribution of the form:

P(y) =

∏
c′∈C(T) ψc′(yc′)∏
s∈S(T) ψs(ys)

(19.11)

where C(T) are nodes of the junction tree (which are the cliques of the chordal graph), and S(T) are the
separators of the tree. To make this equal to the original model, we start by initializing ψs = 1 and ψc′ = 1
for all separators and cliques respectively. Then, for each clique in the original model, c ∈ C(G), we find a
clique in the tree c′ ∈ C(T) which contains it, c ⊆ c′. To equate the two models we set ψc′ := ψc′ψc. After
doing this for all cliques in the original graph, we have:∏

c′∈C(T)

ψc′(yc′) =
∏

c∈C(G)

ψc(yc) (19.12)

We now send messages from leaves to root and back, as sketched in Figure 16a and 16b. In the collect-to-root
phase (Figure 16a), node i sends to its parent j the following message:

mi→j(Sij) =
∑
Ci\Sij

ψi(Ci) (19.13)

That is, we marginalize out the variable that node i “knows about” which are irrelevant to j, and then we
send what is left over. Once a node has received messages from all its children, then it updates its belief state:

ψj(Cj) ∝ ψj(Cj)
∏

i∈ch(j)

mi→j(Sij) (19.14)

At the root ψr(Cr) represents P(yCr |x), which is the posterior over the nodes in the clique Cr conditioned
on all the evidence. Its normalization constant is P(x)/Z0, where Z0 is the normalization constant for the
unconditional prior, P(y). (We have Z0 = 1 if the original model was a DGM).

In the downwards pass, also known as the distribute-from-root phase (Figure 16b), node i sends to its children
j the following message:

mi→j(Sij) =

∑
Ci\Sij ψi(Ci)

mj→i(Sij)
(19.15)

We divide out by what j sent to i to avoid double counting of evidence - other than that, this message is
similar to the upward pass. This requires that we store messages from the upward pass. Once a node has
received a top-down message from its parent, it can compute its final belief state using:

ψj(Cj) ∝ ψj(Cj)mi→j(Sij) (19.16)

This is exactly the same as updating the belief state in the upward pass, except that we receive only one
message i.e. from the parent, because we are working on a tree. Another way of looking at the same process
is based on computing messages inside the separator potentials, and updating the recipient potential. This
process is known as junction tree calibration.

87

Ahmad Humayun Machine Learning Notes

• If all nodes are discrete with K states each, JTA would take O(|C|Kw+1) time and space, where |C| is the
number of cliques and w is the treewidth of the graph, i.e. the size of the largest clique minus 1. As discussed
before, choosing a triangulation so as to minimize the treewidth is NP-hard.

• (MLPP 20.5) VE and JTA take time that is exponential in the treewidth of a graph. Since the treewidth can
be O(|V|) in the worst case, this means these algorithms can be exponential in the problem size. It is easy to
show that exact inference is NP-hard. Hence, we need to turn to approximate inference.

20 Variational Inference

• Given that we are using some distribution which is not discrete or Gaussian, how do we perform inference? We
look toward deterministic approximate inference algorithms based on variational inference (MLPP 21.1).
Here the basic idea is to pick an approximation q , Q(y) from some tractable family, and then try to make
the approximation as close as possible to the true posterior p∗ , P∗(y) , P(y|D), usually by minimizing
the KL divergence from p∗ to q. This reduces the inference to an optimization problem. By relaxing the
constraints that q is a proper distribution, and/or by approximating the KL objective function, we can trade
accuracy for speed.

• (MLPP 21.2) To make q look “similar” to p∗, the intractable true distribution. The obvious cost function to
try to minimize is the forward KL divergence (also known as moment projection):

KL(p∗‖q) =
∑
y

p∗(y) log
p∗(y)

q(y)
(20.1)

But we know this is hard to compute, since taking expectations wrt p∗ is assumed to be intractable. A natural
alternative is the reverse KL divergence (also called the information projection):

KL(q‖p∗) =
∑
y

q(y) log
q(y)

p∗(y)
(20.2)

The main advantage here is that computing expectations wrt q is tractable. The former usually over-estimates
the support of p, while the latter under-estimates it. Unfortunately even the latter form is not tractable,
because p∗(y) = P(y|D) pointwise is hard, since it requires evaluating the intractable normalization constant
Z = P(D). However, usually the un-normalized distribution p̃(y) , P(yx,D) = Zp∗(y). is tractable to
compute/ We therefore define our new objective function is follows:

J(q) , KL(q‖p̃) = KL(q‖p∗)− logZ (20.3)

Since Z is constant, by minimizing J(q), we will force q to become close to p∗. J(q) is an upper bound on the
NLL, which we would like to minimize.

• A popular method for variational inference is called the mean field approximation (MLPP 21.3). In this
approach, we assume the posterior is a fully factorized approximation of the form:

q(y) =

D∏
i=1

qi(yi) (20.4)

Our goal is to solve this optimization problem:

min
q1,...,qD

KL(q‖p) (20.5)

where we optimize over the parameters of each marginal distribution qi. We can solve this by coordinate
descent technique. We can show that each step we make the following update:

log qj(yj) = E−qj [log p̃(y)] + const (20.6)

88

Machine Learning Notes Ahmad Humayun

Here p̃(y) , P(y,D) is the unnormalized posterior and the notation E−qj [f(y)] means to take the expec-
tation over f(y) with respect to all the variables except yj . For examples if we have three variables, then
E−q2 [f(y)] =

∑
y1

∑
y3
q1(y1)q3(y3)f(y1, y2, y3).

When updating qj , we only need to reason about the variables which share a factor with xj , i.e. the terms
in j’s Markov blanket; the other terms are absorbed into the constant term. Since we are replacing the
neighboring values by their mean value, the method is called mean field. This is similar to Gibbs sampling,
except instead of sending sampled values between neighboring node, we send mean values between node. This
tends to be more efficient, since the mean can be a proxy for a large number of samples. In mean field, of
course, updating one distribution qi at a time can be slow, since it is a form of coordinate descent. It is
important to note that the mean field method can be used to infer discrete or continuous latent quantities,
using a variety of parametric form for qi.

• The assumption that all variables in the posterior are independent of each other is a strong assumption. At
times we can exploit substructures in our problem, so we can efficiently handle some kinds of dependencies.
This is called structured mean field (MLPP 21.4). The approach is same as before, except we group sets
of variables together, and update them simultaneously. This follows by treating all variables in the i’th group
as a single “mega-variable,” and then deriving the form for Equation 20.6. As long as we can perform efficient
inference in each qi, the method is tractable overall.

• So far we have been concentrating on inferring latent variables yi assuming the parameters θ of the model are
known. Now suppose we wanted to infer the parameters themselves. If we make a fully factorized (i.e. mean
field) approximation, p(θ|D) ≈

∏
k q(θk), we get the method known as variational Bayes (VB) (MLPP

21.5). If we want to infer both the latent variables and the parameters, and we make an approximation of
the form p(θ,y1:N |D) ≈ q(θ)

∏
i qi(yi), we get a method known as variational Bayes EM (VBEM).

Although the math to derive these model gets muddy, the upshot is a method as fast as MAP estimation,
while enjoying the statistical benefits of the Bayesian approach. In VB, we are maximizing a lower bound on
the log marginal likelihood. (Note, usually variational inference underestimates the posterior uncertainty).

• The principle advantage of VBEM over regular EM is that by marginalizing out the parameters we can
compute a lower bound on the marginal likelihood, which can be used for model selection (MLPP 21.6).
VBEM is also “egalitarian” in the sense that it treats parameters as “first class citizens,” just like any other
unknown quantity, whereas EM makes an artificial distinction between parameters and latent variables.

• Methods for getting better lower bounds for distributions (MLPP 21.8.2) / (MLPP 21.8.3).

21 More Variational Inference

• (MLPP 22.1) We are still aiming for variational inference, where the basic idea is the same: minimize
J(q) = KL(q‖p̃), where p̃ is the exact but un-normalized posterior as before, but where we no longer re-
quire q to be factorized. In fact, we do no even require that q to be a globally valid joint distribution. Instead,
we only require that q is locally consistent, meaning that the joint distribution of two adjacent nodes agrees
with the corresponding marginals.

• There is a very simple approximate inference algorithm for discrete (or Gaussian) graphical models known
as Loopy Belief Propagation (LBP) (MLPP 22.2). The basic idea is quite simple: we apply the belief
propagation algorithm (see Section 19) to the graph, even if it has loops (i.e. even if it is not a tree). This
method is simple and efficient, and often works well in practice, outperforming mean field.

• (MLPP 22.2.1) When there are loops in a graph, BP is not guaranteed to give correct results, and may not
even converge. This is because the network is no longer singly connected and local propagation schemes
will invariably run into trouble . . . if we ignore the existence of loops and permit the nodes to continue
communicating with each other as if the network we singly connected, messages may circulate indefinitely
around the loops and the process may not converge to a stable equilibrium.

89

Ahmad Humayun Machine Learning Notes

• Applying LBP an undirected graphical model / MRF with pairwise factors is simple. Just repeatedly apply
Equations 19.7 and 19.8 until convergence:

Algorithm 6: Loopy belief propagation (LBP) for a pairwise MRF

Input: Node potentials ψs(ys), edge potentials ψst(ys, yt)
1 Initialize messages ms→t(yt) = 1 for all edges s− t
2 Initialize beliefs bels(ys) = 1 for all nodes s
3 repeat
4 Send messages on each edge (Equation 19.8):

mt→s(ys) =
∑
yt

(
ψt(yt)ψst(ys, yt)

∏
u∈nbr(t)\smu→t(yt)

)
5 Update belief of each node (Equation 19.7):

belt(yt) ∝ ψt(yt)
∏
s∈nbr(t)ms→t(yt)

6 until beliefs don’t change significantly
Output: Return marginal beliefs bels(ys)

• Factor Graphs (MLPP 22.2.3) is a graphical representation which makes it easier to deal with models with
higher-order clique potentials (this includes directed models where some nodes have more than one parent).
Its representation unifies directed and undirected models, which simplifies certain message passing algorithms.
More precisely, a factor graph is an undirected bipartite graph with two kinds of nodes. The two groups are
round nodes representing variables, and square nodes representing factors, and there is an edge from each
variable to every factor that mentions it. For example, consider the MRF in Figure 18a. If we assume one
potential per maximal clique, we get the factor graph in Figure 18b, which represents the function:

f(y1, y2, y3, y4) = f123(y1, y2, y3) f234(y2, y3, y4) (21.1)

Or if we assumer one potential per edge, we get the factor graph in Figure 18c, which represents the function

f(y1, y2, y3, y4) = f12(y1, y2) f13(y1, y3) f23(y2, y3) f24(y2, y4) f34(y3, y4) (21.2)

We can also convert a DGM to a factor graph: just create one factor per CPD, and connect that factor to
all the variables that use that CPD. For example Figure 18d can be factorized as Figure 18e, which can be
represented by:

f(y1, y2, y3, y4, y5) = f1(y1) f2(y2) f123(y1, y2, y3) f34(y3, y4) f35(y3, y5) (21.3)

where we define f123(y1, y2, y3) , P(y3 | y1, y2), etc. If each node has at most one parent (and hence the graph
is a chain or a simple tree), then there will be one factor per edge (root nodes can have their prior CPDs
absorbed into their children’s factors). Such models are equivalent to pairwise MRFs.

• We can perform BP on a factor graph (MLPP 22.2.3.2). As mentioned earlier, the intuition is that if the
loops are long then the eect of the loops fades out as the messages propagate and the resulting answer is
accurate in any case. The method is quite similar to typical BP, where we send message on a factor graph
between factors and variables. See Figure 19a for an illustration. The messages from variables to factors are:

my→f (y) =
∏

f ′∈nbr(y) \ {f}

mf ′→y(y) (21.4)

where in Figure 19a the factors neighboring the variable y are, nbr(y) \ {f} , {f1, . . . , fM}. The messages
from factors to variables are:

mf→y(y) =
∑
y1

· · ·
∑
yN

f(y, y1, . . . , yN)
∏

y′∈nbr(f) \ {y}

my′→f (y′)

 (21.5)

90

Machine Learning Notes Ahmad Humayun

1

2 3

4

(a) Example MRF

1

2 3

4

(b) Factor Graph of Figure 18a assuming
one potential per maximal clique

1

2 3

4

(c) Factor Graph of Figure 18a assuming
one potential per edge

y1 y2

y3

y4 y5

(d) Example DGM

y1 y2

P(y1) P(y2)

y3

P(y3 | y1, y2)

y4 y5

P(y4 | y3) P(y5 | y3)

(e) Factor Graph of Figure 18d

Figure 18

Note that y is not included in the set {y1, . . . , yN}. In the Figure 19a, the variable y is excluded from the
set {y1, . . . , yN}. Also in the figure all variables neighboring factor f are, nbr(f) \ {y} , {y1, . . . , yN}. At
convergence we can compute the final beliefs as a product of incoming messages:

bel(y) ∝
∏

f∈nbr(y)

mf→y(y) (21.6)

• LBP does not converge and even when it does, it may converge to wrong answers (MLPP 22.2.4). How can
we find when will LBP converge. For this we use an analysis technique based on computation tree, which
visualizes messages that are passed as the algorithm proceeds (MLPP 22.2.4.1). At the root of the tree you
have the node which you are concerned about. At depth 1, you will have nodes which send messages to node
at the root at the first iteration. At depth 2, you will have nodes which sent messages to the root node
(and their message had travelled through the path specified by the tree). The key insight is that T iterations
of LBP is equivalent to exact computation in a computation tree of height T + 1. If the strengths of the
connections on the edges is sufficiently weak, then the influence of the leaves on the root will diminish over
time, and convergence will occur.

91

Ahmad Humayun Machine Learning Notes

y fj

y1

y2

yN

f1

f2

fM
nbr(y) \ {fj} nbr(fj) \ {y}

my→fj (y)
my1
→f

j
(y1

)

mfj→y(y)

m
f
1→

y (y)

(a) Message passing in a bipartite factor graph. Red arrows are messages from
variables to factors and blue arrows are messages from factors to variables.

Figure 19

• In practice if LBP is not converging, what should be done? One simple way to reduce the chance of oscillation
is use damping. This is just a decay term on the message. Indeed, osciallating marginals is sometimes a sign
that the LBP approximation is a poor one.

• Another question is how to increase the rate of convergence (MLPP 22.2.4.3). The standard approach in
LBP is to perform synchronous updates, where all nodes absorb messages in parallel, and then send out
messages in parallel. A faster convergence approach is to use asynchronous updates, which works in a fixed
round-robin fashion, where at iteration k + 1 the message for edge i is computed using new messages (from
iteration k+ 1) from edges edges earlier in the ordering, and using old messages (from iteration k) from edges
later in the ordering.

This raises the question what is the right ordering to update the messages. A smarter approach is to pick a set
of spanning trees, and then perform an up-down sweep on one tree at a time, keeping all the other messages
fixed. This is known as tree reparameterization (TRP). Another technique is to focus more on variables
that are most uncertain - this is called residual belief propagation. in which messages are scheduled to be
sent according to the norm of the difference from their previous value. This scheme usually converges more
often, and faster than synchronous, or asynchronous updating with fixed order, or the TRP approach.

• For a graph with a single loop, one can show that the max-product version of LBP will find the correct MAP
estimate, if it converges (MLPP 22.2.5)

• Fast message computation for large state spaces (MLPP 22.2.6.1) The cost of computing each mes-
sage in BP (whether in a tree or a loopy graph) is O(Kf), where K is the number of states, and f is
the size of the largest factor (f = 2 for pairwise UGMs). For pairwise potential functions of the form
ψst(ys, yt) = ψst(ys,−yt), one can compute sum-product messages in O(K logK) using FFT. The key insight
is that the message computation is just a convolution. If the potential function ψ(·) is a Gaussian-like poten-
tial, we can compute the convolution in O(K) time by sequentially convolving with a small number of box
filters (Felzenszwalb and Huttenlocher 2006).

• (MLPP 22.2.6.2) In 2D lattice structures, you can have a coarse-to-fine grid - you can start computing messages
on the coarse level and then use them to initialize messages on the next level. This heuristic helps in speeding
up BP.

• (MLPP 22.3) UGMs can be represented in the exponential family form:

P(y |θ, G) =
1

Z(θ)
exp

∑
s∈V

θs(ys) +
∑

(s,t)∈E

θst(ys, yt)

 (21.7)

92

Machine Learning Notes Ahmad Humayun

Figure 20: (a) The marginal polytope for an Ising model with two variables. (b) Conceptual illustration of set
MF (G), which is a nonconvex inner bound on the marginal polytope M(G). MF (G) is used by mean field. (c)
Conceptual illustration of the relationship between M(G) and L(G), which is used by LBP. The set L(G) is always
an outer bound on M(G), and the include M(G) ⊂ L(G) is strict whenever G has loops. Taken from (Wainwright
and Jordan 2008).

where the graph is G(V, E). We can rewrite this in the exponential family form (forgetting about the explicit
condition on θ and G because they are known and fixed):

P(y |θ) =
1

Z(θ)
exp (−E(y)) , E(y) , −θTφ(y) (21.8)

where θ = ({θs;j}, {θs,t;j,k}) are all node and edge parameters (the canonical parameters). On the other
hand φ(y) = ({I(ys = j)}, {I(ys = j, yt = k)}) are all the node and edge indicator functions (the sufficient
statistics). Note, we are using s, t ∈ V to index nodes, and j, k ∈ X to index states.

The mean of the sufficient statistics are known as the mean parameters of the model, and are given by:

µ = E[φ(y)] = ({P(ys = j)}s, {P(ys = j, yt = k}s6=t) (21.9)

= ({µs;j}s, {µst;jk}s6=t) (21.10)

This is a vector of length d = |X ||V| + |X |2|E|, containing the node and edge marginals. It completely
characterizes the distribution P(y|θ), so we sometimes treat µ as a distribution itself. Equation 21.7 is called
the standard overcomplete representation. If is called “overcomplete” because it ignores the sum to
one constraints. It might be convenient to remove this redundancy, for instance in the potts model, where
X ∈ {0, 1}, the minimal parameterization would lead to d = |V|+ |E|.

• The space of allowable µ vectors is called the marginal polytope and is denoted by M(G), where G is the
structure of the graph defining the UGM. This is defined to be the set of all mean parameters for the given
model that can be generated from a valid probability distribution:

M(G) ,

{
µ ∈ Rd : ∃p s.t. µ =

∑
y

φ(y)p(y) for some p(y) ≥ 0,
∑
y

P(y) = 1

}
(21.11)

For instance for an Ising model, the constraints on µ are just a series of half-planes, whose intersection defines
a polytope (like an example in Figure 20a). Since M(G) is obtained by taking the convex combination of the
φ(y) vectors, it can also be written as a convex hull of the feature set. The black dots in Figure 20a define
that convex hull.

93

Ahmad Humayun Machine Learning Notes

• The exact inference techniques can be viewed as a variational optimization problem (MLPP 22.3.3). This
comes down to optimizing:

max
µ∈M(G)

θTµ+ H(µ) = logZ(θ) (21.12)

Even though this function seems easy to optimize (since it is the sum of a linear function and the entropy, H is
concave, moreover we are maximizing over a convex set M(G)), this is hard because M(G) has exponentially
many facets. In some cases, there is structure to this polytope that can be exploited by dynamic programming,
but in general, exact inference takes exponential time. Most existing deterministic approximate inference
schemes that have been proposed in literature can be seen as different approximations to the marginal polytope.
For instance, mean field inference gives an inner approximation to the marginal polytope (see Figure 20b),
where MF (G) is a non-convex polytope, which result in multiple local optima (MLPP 22.3.4).

Similarly when LBP is viewed as a variational inference problem, we get the convex outer approximation L(G)
on M(G), which is illustrated in Figure 20c (MLPP 22.3.5.1).

• LBP vs Mean Field (MF) (MLPP 22.3.6): LBP is exact for trees whereas MF is not. LBP optimizes
over node and edge marginals, whereas MF only optimizes over node marginals. Both these facts suggest
that LBP should in general be more accurate than MF. MF objective has many more local optima than the
LBP objective, so optimizing the MF might be harder. If we initialize MF with BP marginals, we tend to get
overconfident yet good results, indicating that the weakness of MF is not the inaccuracy of MF approximations,
but rather the severe non-convexity of the MF objective, and the standard coordinate descent optimization
used with MF. However, the advantage of MF is that it gives a lower bound on the partition function, unlike
BP, which is useful when using it as a subroutine inside a learning algorithm. Also, MF can be extended to
handle other distributions beside discrete and Gaussian - since MF works with marginal distributions, which
have a single type, rather than having to define pairwise distributions.

• If you consider spanning trees in a graph, we can compute the upper bound on the entropy, by averaging
over all trees. This induces the edge appearance probability ρst (MLPP 22.4.2.1) which is the additional
term in the edge marginals for variational optimization we can perform for LBP. These edge appearance
probabilities live in a space called the spanning tree polytope. So long as ρst > 0 for all edges (s, t), the
variational optimization is strictly concave with a unique maximum. To get this global optimum, the simplest
way is to use tree reweighted belief propagation (TRW / TRBP), which is modification of BP where
the message from t to s is now a function of all messages sent from other neighbors v to t, as before, but now
it is also a function of the message sent from s to t. TRBP entropy approximation is an upper bound on the
true entropy.

• Expectation Propagation (EP) (MLPP 22.5) is a form of belief propagation where the messages are
approximated. Here we approximate the posterior at each step using an assumed functional form, such as a
Gaussian. The posterior can be computed using moment matching, which locally optimizes KL(p‖q) for a
single term. From this we derive the message to send in the next time step. EP makes multiple passes over
the data (making it a batch / offline algorithm), to reduce an a side-effects of the order in which the data was
viewed.

• MAP state estimation (MLPP 22.6): Now what if we wanted to find the most probable configuration of
variables in a discrete-state graphical model, i.e. our goal is to find a MAP assignment of the following form:

y∗ = arg max
y∈Xm

P(y |θ) = arg max
y∈Xm

∑
i∈V

θi(yi) +
∑
f∈F

θf (yf) (21.13)

= arg max
y∈Xm

θTφ(y) (21.14)

where θi are the singleton node potentials, and θf are the factor potentials (which could be pairwise). Note
that the partition function Z(θ) plays no role in MAP estimation. If the treewidth is low, we can solve this
problem with the junction tree algorithm, but in general this problem is intractable.

94

Machine Learning Notes Ahmad Humayun

• We cab rewrite the objective in terms of the variational parameters as follows:

arg max
y∈Xm

θTφ(x) = arg max
µ∈M(G)

θTµ (21.15)

where φ(x) = [{I(ys = j)}, {I(yf = k)}] and the µ is a probability vector in the marginal polytope. So instead
of optimizing over discrete assignments, we now optimize over probability distributions µ. Even though the
equation is linear, and the constraint set M(G) is convex, the number of facets in M(G) is exponential in the
number of nodes. A standard strategy is to relax the constraints. We now allow µ to live inside a convex
outer bound L(G):

arg max
y∈Xm

θTφ(x) = arg max
µ∈M(G)

θTµ ≤ arg max
τ∈L(G)

θTτ (21.16)

If the solution is integral, it is exact; if it is fractional, it is an approximation. This is called (a first order) linear
programming relaxation (MLPP 22.6.1). How do we solve this optimization? You can use generic linear
programming, but that will be slow. We can devise message passing algorithms for solving this optimization
problem, which will be faster, as explained next.

• (MLPP 22.6.2) The objective in Equation 21.15 is quite similar to the one in Equation 21.12, maxµ∈M(G) θ
Tµ+H(µ),

apart from the entropy term. One heuristic way to proceed would be to consider the zero temperature
limit of the probability distribution µ - where the entropy becomes zero. We can modify message passing
methods to solve this MAP estimation problem. In particular, in the zero temperature limit, the sum oper-
ator becomes the max operator, which results in a method called max-product belief propagation. We
showed before that LBP finds a local optimum of this objective. In the zero temperature limit, this objective
is equivalent to the LP relaxation of the MAP algorithm. Unfortunately, max-product LBP does not solve
this LP relaxation unless the graph is a tree. However, if we use TRBP / TRW, we have a concave objective,
in which case the max-product version of TRBP does solve the above LP relaxation.

A certain scheduling of this algorithm, known as sequential TRBP, TRBP-S, or TRW-S, can be shown
to always converge (Kolmogorov 2006), and furthermore, it typically does so faster than the standard parallel
updates. The idea is to pick an arbitrary node ordering y1, . . . , yN . We then consider a set of trees which is
a subsequence of this ordering. At each iteration, we perform max-product BP from y1 towards yN and back
along one of these trees. It can be shown that this monotonically minimizes a lower bound on the energy, and
thus is guaranteed to converge to the global optimum of the LP relaxation.

• We now show how to find MAP state estimates, or equivalently, minimum energy configurations, by using the
max flow/min cut algorithms fir graphs. The best known running times are O(|E||V| log |V|) or O(|V|3).
The class of these methods is known as graphcuts (MLPP 22.6.3). In the restricted case of MRFs with
binary nodes and some particular potentials, graphcuts can find the exact global optimum. For the case of
multiple states per node, which are assumed to have some underlying ordering we can approximately solve
this case by solving a series of binary sub-problems.

• Graphcuts for the generalized Ising model (MLPP 22.6.3.1): Let us start by considering a binary MRF
where the edge energies have the following form:

Euv(yu, yv) =

{
0 if yu = yv

λuv if yu 6= yv
(21.17)

where λuv ≥ 0 is the edge cost. This encourages neighboring nodes to have the same value (since we are trying
to minimize energy). Since we are free to add any constant we like to the overall energy without affecting the
MAP state estimate, let us rescale the local energy terms such that either Eu(1) = 0 or Eu(0) = 0. Now let
us construct a graph which has the same set of nodes as the MRF, plus two distinguished nodes: the source
s and the sink t. If Eu(1) = 0, we add the edge yu → t with cost Eu(0). This ensures that if u is not in

95

Ahmad Humayun Machine Learning Notes

partition Xt, meaning u is assigned to state 0, we will pay a cost of Eu(0) in the cut. Similarly, if Eu(0) = 0,
we add the edge s→ yu with cost Eu(1). Finally, for every pair of variables that are connected in the MRF,
we add edges yu → yv and yv → yu, both with the cost λuv ≥ 0.

Having constructed the graph, we compute a minimal s− t cut. This is a partition of the nodes into two sets,
Xs, which are nodes connected to s, and Xt, which are nodes connected to t. We pick the partitioning / cut
which minimizes the sum of the cost of the edges between nodes on different sides of the partition. Minimizing
the cost in this graph is equivalent to minimizing the energy in the MRF, which, in turn, maximizing the
probability. Hence, nodes that are assigned to s have an optimal state of 0, and the nodes that are assigned to
t have an optimal state of 1. One key point to note here is that because nodes which are eventually associated
with t are labeled 1, it was essential to set the Eu(0) on the yu → t edge, and vice versa. This is like saying
because node u doesn’t like being associated with label 0, u would put a cost/energy on being broken away
from label 1.

• Graphcut construction can be extended to binary MRFs with more general kinds of potential functions. In
particular, suppose each pairwise energy satisfies the following condition:

Euv(1, 1) + Euv(0, 0) ≤ Euv(1, 0) + Euv(0, 1) (21.18)

which just says that the sum of the diagonal energies is less than the sum of the off-diagonal energies. In this
case, we say the energies Euv are submodular (Kolmogorov and Zabih 2004) (MLPP 22.6.3.2)2. An example
of a submodular energy is in the Ising model as given in Equation 21.17, where λuv > 0. This is also known
as an attractive MRF or associative MRF, since the model “wants” neighboring states to be the same.

To apply graphcuts to a binary MRF with submodular potentials, we construct the pairwise edge weights as
follows:

E′uv(0, 1) , λuv = Euv(1, 0) + Euv(0, 1) − Euv(0, 0) − Euv(1, 1) (21.19)

This is guaranteed to be non-negative by virtue of the submodularity assumption. In addition we construct
new local edge weights as follows: first we initialize E′(u) = E(u), and then for each edge pair (u, v), we
update these values as follows:

E′u(1) := E′u(1) + (Euv(1, 0) − Euv(0, 0)) (21.20)

E′v(1) := E′v(1) + (Euv(1, 1) − Euv(1, 0)) (21.21)

We now construct a graph in a similar way to before. Specifically, if E′u(1) > E′u(0), we add the edge s → u
with cost E′u(1)− E′u(0), otherwise we add the edge u → t with cost E′u(0)− E′u(1). Finally for every MRF
edge for which E′uv(0, 1) > 0, we add a graphcuts edge yu − yv with cost E′uv(0, 1). (We don’t need to add
the edge in both directions). One can show that the min cut in the graph is the same as the minimum energy
configuration. Thus we can use max flow/min cut to find the globally optimal MAP estimate.

• Graphcuts for non-binary metric MRFs (MLPP 22.6.3.3): here we can use graph-cuts to achieve ap-
proximate MAP estimation, where each node can have multiple states. However, we require that the pairwise
energies form a metric. We call such a model a metric MRF. For example, suppose the states have a natrual
ordering, as commonly arises if they are a discretization of some continuous natural space.

One version of graphcuts is the alpha expansion. At each step, it picks one of the available labels or states
and calls it α, and then solves a binary subproblem where each variable can choose to remain in its current

2Submodularity is the discrete analog of convexity. Intuitively, it corresponds to the law of diminishing returns, i.e. the extra value
of adding one more element to a set is reduced if the set is already large. More formally, we say that f : 2S → R is submodular if
for any A ⊂ B ⊂ S and x ∈ S, we have f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B). In Equation 21.18, where Euv(0, 1) , f({b})
and Euv(1, 1) , f({a, b}), and so on - the equation this translates to f({a, b}) + f(∅) ≤ f({a}) + f({b}), which is equivalent
to f({b}) − f(∅) ≥ f({a, b}) − f({a}), hence fulfilling submodularity condition, since ∅ ⊂ {a}. If −f is submodular, then f is
supermodular.

96

Machine Learning Notes Ahmad Humayun

state or become α. Alpha expansion can be applied to any metric MRF. At each step of alpha expansion, we
find the optimal move from amongst an exponentially large set; thus we reach a strong local optimum, of
much lower energy than the local optima found by standard greedy label flipping methods such as iterative
conditional models (ICM). Once the algorithm can converges, for instance for Potts model, the energy of
the resulting solution is at most 2 times the optimal energy.

Another version of graphcuts is called alpha-beta swap. At each step, two labels are chosen, call them α
and β. All the nodes labeled α can change to β (and vice versa) if it reduces the energy of the solution.
The resulting binary subproblem can be solved exactly, even if the energies are only semi-metric (i.e. the
triangle inequality need not hold). Even though we can apply it to wider class of energies than α-expansion,
empirically the latter performs better usually.

• (MLPP 22.6.4) When comparing different methods for MAP estimation on various low-level vision problems,
graphcuts and TRW give the best results, with regular max-product BP being much worse. In terms of speed,
graphcuts is fastest. with TRW being a close second. Other algorithms, such as ICM, simulated annealing do
even worse. (Note sometimes we are not even optimizing on the right energy - as it has been shown that the
global minima is lower than the GT estimate - but making the model right and, in the process, more complex
- like enforcing long range constraints - makes BP too slow, and/or make the potentials non-submodular -
making graphcuts inapplicable.

• Dual Decompostion (MLPP 22.6.5): If we are interested in computing Equation 21.13, where F represents
a set of factors, we can come with a scheme where we optimize each term independently, but then to introduce
constraints that force all the local estimates of the variables’ values to agree with each other. The basic idea
is to duplicate all variables once for each factor, and then force them to be equal. On top of this we introduce
Lagrange multipliers or dual variables to enforce these constraints.

22 Monte Carlo Inference

• (MLPP 23.1) Up until now we have discussed deterministic algorithms for posterior inference. The problem
with these methods is that they can be rather complicated to derive and their domain of applicability is
somewhat limited (e.g. they usually assume conjugate priors and exponential family likelihood). Here we
discuss the idea of Monte Carlo approximation. The basic idea is simple: generate some (unweighted) samples
from the posterior x(s) ∼ P(x|D), and then use these to compute any quantity of interest, such as the posterior
marginal P(x1|D), or the posterior of the difference of two quantities P(x1−x2|D), or the posterior predictive

P(y|D), etc. All of these quantities can be approximated by E[f |D] ≈ 1
S

∑S
s=1 f(x(s)). By generating enough

examples we cab achieve any desired level of accuracy. The man question is: how do we efficiently generate
sample from a probability distribution - given that it could be even in high dimensions?

• The simplest way to sample from a univariate distribution is based on the inverse probability transform
(MLPP 23.2.1). Let F be the CDF of some distribution we want to sample, and F−1 be its inverse. Then we
have the following theorem:

Theorem 22.1. Inverse Probability Transform Theorem: If U ∼ U(0, 1) is a uniform random variable, then
F−1(U) ∼ F .

Hence we can sample from a univariate distribution as follows: (1) generate a random number u ∼ U(0, 1);
(2) compute x := F−1(u); (3) the generated sample is x.

• If the probability density function of a random variable X is given as fX(x) it is possible to calculate the
probability density function of some variable Y ∼ gY (y). This is called a change of variable and is in practice
used to generate a random variable of arbitrary shape fg(x) = fY using a known (for instance uniform) random

97

Ahmad Humayun Machine Learning Notes

number generator. This follows from the fact that the probability contained in a differential area must be
invariant under change of variables, i.e.:

|fY (y) ∂y| = |fX(x) ∂x|, fY (y) = fX(x)

∣∣∣∣∂x∂y
∣∣∣∣ (22.1)

This is useful in sampling, as we will see below.

• Box-Muller method (MLPP 23.2.2) is a method to sample from a Gaussian. The idea is that we sam-
ple uniformly from a unit radius circle, and then use change of variables formula to derive samples from
a spherical 2d Gaussian. This can be thought of as two samples from a 1d Gaussian. In more detail,
sample z1, z2 ∈ (−1, 1) uniformly, and then discard pairs that don’t satisfy z2

1 + z2
2 ≤ 1. The result

will be points uniformly distributed inside the unit circle, so P(z) = 1
π I(z inside circle). Now define

xi = zi

√
−2 log r2

r2 , i = 1 : 2, where r2 = z2
1 + z2

2 . Using the multivariate change of variables formula we

have:

P(x1, x2) = P(z1, z2)

∣∣∣∣ ∂(z1, z2)

∂(x1, x2)

∣∣∣∣ =

[
1√
2π

exp

(
−1

2
x2

1

)][
1√
2π

exp

(
−1

2
x2

2

)]
(22.2)

Hence x1 and x2 are two independent samples from a univariate Gaussian.

To sample from a multivariate Gaussian, we first compute the Cholesky decomposition of its convariance
matrix, Σ = LLT, where L is lower triangular. Next we sample x ∼ N (0, I) using the Box-Muller method.
Finally we set y = Lx + µ.

•

• rejectsample An alternative to the inverse CDF method is rejection sampling (MLPP 23.3). In rejection
sampling, we create a proposal distribution q(x) which satisfies Mq(x) ≥ p̃(x), for some constant M , where
p̃(x) is an unnormalized version of p(x) (i.e. p(x) = p̃(x)/Zp for some possibly unknown constant Zp). The
function Mq(x) provides an upper envelope for p̃. We then sample x ∼ q(x), and then we sample u ∼ U(0, 1),

which corresponds to pick a random height under the envelope. If u > p̃(x)
Mq(x) , we reject the sample, otherwise

accept it. You can verify this by observing if the CDF of this sampling distribution is equivalent to p(x). We
would want to choose M as small as possible while still satisfying Mq(x) ≥ p̃(x), because that will increase
the probability of a sample being accepted.

• (MLPP 23.3.3) We can apply rejection sampling to Bayesian statistics as follows: suppose we want to draw
(unweighted) samples from the posterior P(θ|D) = P(D|θ)P(θ)/P(D). We can use rejection sampling with

p̃(θ) = P(D|θ)P(θ) as the target distribution and q(θ) = P(θ) as our proposal, and M = P(D|θ̂), where

θ̂ = arg maxP(D|θ) is the MLE. We accept points with probability:

u >
p̃(θ)

Mq(θ)
=
P(D|θ)

P(D|θ̂)
(22.3)

Thus samples from the prior that have high likelihood are more likely to be retained in the posterior. Of
course, if there is a big mismatch between the prior and posterior (which will be the case if the prior is vague
and the likelihood is informative), this procedure is very inefficient.

• How to get a tighter envelope for q(x). If we have a log concave density p(x), we can upper bound this log
density by piecewise linear function. We choose the initial locations for the pieces based on a fixed grid over
the support of the distribution. We then compute the gradient of the log density at these locations and make
the likes be tangent to these points. Sampling from this envelope is simple. If the sample x is rejected, we
create new grid point at x, and thereby refining the envelope. The tightness of the envelope improves with
with the number of grid points, and the rejection rate goes down. This is known as adaptive rejection
sampling (MLPP 23.3.4).

98

Machine Learning Notes Ahmad Humayun

• Rejection sampling does extremely poorly in higher dimensions (MLPP 23.3.5).

• Another Monte Carlo method is known as importance sampling (MLPP 23.4) for approximating integrals
of the form:

I = E[f] =

∫
f(x)P(x)dx (22.4)

Importance sampling is actually not sampling (because you are not sampling the distribution P(x), but its a
variant of Monte Carlo approximation - where we try to approximate E[f] ≈ 1

n

∑n
i=1 f(x(i)), and here x(i) ∼ p.

This is a big assumption that you can sample from p as before. Now we need to correct for this assumption that
we can sample from p. The idea is to draw samples x(s) in regions which have high probability, P(x(s)), but
also where |f(x(s))| is large. The result can be efficient, meaning it needs less samples than if were to sample
directly from distribution p(x). The reason is that the samples are focused on the important parts of space.
For instance, suppose we want to estimate the probability of a rate event E. Define f(x(s)) = I(x(s) ∈ E).
Then it is better to sample from a proposal distribution of the form q(x) ∝ f(x)p(x) than to sample from
p(x) itself.

Importance sampling samples from any proposal q(x). These samples are used to estimate the integral:

E[f] =

∫
f(x)P(x)dx =

∫
f(x)

P(x)

q(x)
q(x)dx ≈ 1

S

S∑
s=1

wsf(x(s)) = Î (22.5)

where now we sample x(s) ∼ q, and ws , P(x(s))
q(x(s))

are the importance weights. The second equality holds

for any q, as long as q(x) = 0 ⇒ P(x) = 0. Note that unlike rejection sampling we use all the samples. Now
the question is how should you choose the proposal q(x)? A natural criterion is to minimize the variance of

the estimate Î =
∑
s
P(x(s))f(x(s))

q(x(s))
. Minimizing this, leads to a lower bound which holds for any q:

q∗(x) =
|f(x)|P(x)∫
|f(x′)|P(x′)dx′

(22.6)

If the distributions are unnormalized
Zq
Zp

p̃(x)
q̃(x) = p(x)

q(x) . Now the weights would be unnormalized too, ŵ(s) = p̃(x(s))
q̃(x(s))

.

We can estimate the ratio
Zq
Zp

as the mean of the weights 1
S

∑S
s=1 w̃s, moreover ws ,

w̃s∑
s′ w̃s′

.

• If we have no evidence, how do we use importance sampling to generate samples from a DGM (MLPP 23.4.3)?
We sample from the root nodes, then sample their children (given what we sampled from the root nodes), then
sample their children and so on. This is called ancestral sampling. Now suppose we have some evidence,
i.e. some nodes are “clamped” to observed values, and we want to sample from the posterior P(x|data). If
all the variables are discrete, we can perform ancestral sampling, but as soon as we sample a value that is
inconsistent with an observed value, we reject the whole sample and start over. This is called logic sampling.

Needless to say, Logic sampling is inefficient, plus the variables are constrained to be discrete. Rather than
sampling over the observed variables, we just accept their observed value, and adjust the weights accordingly.
This is called likelihood weighting. Now the weights would be:

ws =
∏
t∈E
P(x

(s)
t |x

(s)
pa(t)) (22.7)

where E is the set of observed nodes.

• We can draw unweighted samples from P(x) by first using importance sampling (with proposal q) to generate
a distribution of the form:

P(x) ≈
S∑
s=1

wsδx(s)(x) (22.8)

99

Ahmad Humayun Machine Learning Notes

where ws are the normalized importance weights. We then sample with replacement from this equation, where
the probability that we pick x(s) is ws. This is known as Sampling Importance Resampling (SIR). The
result is an un-weighted approximation of the form:

P(x) ≈ 1

S′

S′∑
s=1

δ
[
x− x(s)

]
(22.9)

Note that typically S′ � S.

• The EKF (Section 17) and UKF (Section 17) can partially cope with nonlinear temporal and measurement
models. However, they both represent the uncertainty over the state as a normal distribution. They are
hence ill-equipped to deal with situations where the true probability distribution over the state is P(zt|xt) is
multimodal. In this situation neither EKF nor the UKF suffice: the EKF models only one of the resulting
clusters and the UKF tries to model both with a single normal model, assigning a large probability to the
empty region between clusters. Particle filtering (CVPrince 19.5) (MLPP 23.5) resolves this problem by
representing the probability density as a set of particles in the state space. Each particle can be thought of
as representing a hypothesis about the possible state. When the state is tightly contrained by the data, all
of these particles will lie close to each other. In more ambiguous cases, they will be widely distributed or
clustered into groups of competing hypotheses. The particles can be evolved through time or projected down
to simulate measurements regardless of how nonlinear the functions are. This leads to particle filters being
able to model multimodal distributions.

The probability distribution P(zt−1 |x1:t−1) is represented by a weighted sum of J weighted particles:

P(zt |x1:t) =

J∑
j=1

ŵ
(j)
t δ

[
zt − ẑ

(j)
t

]
(22.10)

where ẑ
(j)
t represents the j’th particle. Here the normalized weights ŵt which are positive and sum to one.

Each particle represents a hypothesis about the state and the weight of the particle indicates our confidence
in that hypothesis. Our goal is to compute the probability distribution P(zt+1 |x1:t+1) at the next time step,
which will be represented in a similar fashion.

The simplest way to do particle filtering is through sequential importance sampling. Let’s say the
proposal distribution has the form q(z1:t|x1:t). For each old sample s we propose a new sample from the

proposal distribution z
(s)
t ∼ q(zt|z

(s)
t−1, xt). This new particle is given the weight w

(s)
t using the formula:

w
(s)
t ∝ wst−1

P(xt|z(s)
t)P(z

(s)
t |z

(s)
t−1)

q(z
(s)
t |z

(s)
t−1,xt)

(22.11)

These weights are normalized to ŵ
(s)
t = w

(s)
t /

∑
s′ w

(s′)
t .

• One problem with sequential importance sampling is that the algorithm fails after a few steps because most of
the particles will have negligible weight. This is called the degeneracy problem, and occurs because we are
sampling in a high dimensional space. The two solutions to the degeneracy problem is to add a resampling
step, and use a good proposal distribution.

• Another solution to the degeneracy problem is to set the proposal distribution as sampling from the prior:

q(zt|z(s)
t−1,xt) = P(zt|z(s)

t−1) (22.12)

Now the weight update simplifies to w
(s)
t ∝ w

(s)
t−1P(xt|z(s)

t). This can be thought of as a “generate and
test” approach: we sample values from the dynamic model, and then evaluate how good they are after we

100

Machine Learning Notes Ahmad Humayun

see the data. This is applied to a particle filtering method called the conditional density propagation
or condensation algorithm. As usual this process is divided into a time evolution and a measurement
incorporation step.

Time evolution: In the time evolution step, we create J predictions ẑ
(j)
+ for the time evolved state. Each is

represented by an unweighted particle:

1. Sample an index n ∈ {1, . . . , J} of the original weighted particles according to the weights. In other
words we draw a sample from Cat(n |w), and

2. Draw the sample ẑ
(j)
+ from the temporal update distribution P(zt | zt−1 = ẑ

(n)
t−1).

In this process, the final unweighted particles ẑ
(j)
+ are created from the original weighted particles ẑ

(j)
t−1 accord-

ing to the weights w = [w1, . . . , wJ]. Hence the highest weighted original particles may contribute repeatedly
to the final set, and the lowest weighted ones may not contribute at all.

Measurement incorporation: Here we weight the new set of particles according to how well they agree
with the observed data:

1. Pass the particles through the measurement model x̂
(j)
+ = h[ẑ

(j)
+].

2. weight the particles according to their agreement with the observation density. For example, with a

Gaussian measurement model, we could use: wj ∝ P(xt | ẑ(j)
+) = N (xt | x̂(j)

+ ,R)

3. Ensure {wj}Jj=1 sums to one.

4. Finally we set the new states ẑ
(j)
t to the predicted states ẑ

(j)
+ and the new weights to wj .

The main disadvantage of particle filters is their cost: in high dimensions, a very large number of particles
may be required to get an accurate representation of the true distribution over the state.

• Rao-Blackwellised particle filtering (RBPF) (MLPP 23.6).

23 Markov chain Monte Carlo (MCMC) inference

• The Monte Carlo methods we discussed before don’t fare well in higher dimensional spaces. The most popular
method for sampling from high-dimensional distributions is Markov chain Monte Carlo (MCMC) (MLPP
24.1).

• The basic idea behind MCMC is to construct a Markov chain on the state space X whose stationary distribu-
tion is the target density P∗(x) of interest (this may be a prior or a posterior). That is, we perform random
walk on the state space, in such a way that the fraction of time we spend in each state x is proportional
to P∗(x). By drawing (correlated) samples x0, x1, x2, . . . , from the chain, we can perform Monte Carlo
integration wrt P∗.

• It is worth briefly comparing MCMC to variational inference. The advantages of variational inference are (1)
for small to medium problems, it is usually faster; (2) it is deterministic; (3) is it easy to determine when
to stop; (4) it often provides a lower bound on the log likelihood. The advantages of sampling are: (1) it
is often easier to implement; (2) it is applicable to a broader range of models, such as models whose size or
structure changes depending on the values of certain variables (e.g., as happens in matching problems), or
models without nice conjugate priors; (3) sampling can be faster than variational methods when applied to
really huge models or datasets.

• A popular MCMC method is known as Gibbs sampling (MLPP 24.2). This is the MCMC analog of
coordinate descent. The idea behind Gibbs sampling is that we sample each variable in turn, conditioned on
the values of all the other variables in the distribution. That is, given a joint sample x(s) of all the variables,

101

Ahmad Humayun Machine Learning Notes

we generate a new sample x(s+1) by sampling each component in turn, based on the most recent values of the
other variables. For example, if we have D = 3 variables, we could sample in the following order:

1. x
(s+1)
1 ∼ P(x1 |x(s)

2 , x
(s)
3)

2. x
(s+1)
2 ∼ P(x2 |x(s+1)

1 , x
(s)
3)

3. x
(s+1)
3 ∼ P(x3 |x(s+1)

2 , x
(s+1)
3)

This readily generalizes to D variables. If xi is a visible variable, we do not sample it, since the value is already
known. The expression P(xi|x−i) is called the full conditional for variable i. In general, xi may only depend
on some of the other variables. If we represent P(x) as a graphical model, we can infer the dependencies by
looking at i’s Markov blanket, which are its neighbors in the graph. Thus to sample xi, we only need to know
the values of i’s neighbors. In this sense, Even though Gibbs sampling seems like a distributed algorithm, it
is not a parallel algorithm, since the samples must be generated sequentially.

• Gibbs sampling can be quite slow, since it only updates one variable at a time (so-called single site updat-
ing), if the variables are highly correlated, it will take a long time to move away from the current state. If the
variables are highly correlated, the algorithm will move very slowly through the state space. In particular,
the size of the moves is controlled by the variance of the conditional distributions. In some cases we can
efficiently sample groups of variables at a time. This is called blocking Gibbs sampling or blocked Gibbs
sampling (MLPP 24.2.8), and can make much bigger moves through the state space.

• When the distribution’s corresponding graphical model has no useful Markov structure, Gibbs sampling cannot
do much - since we sample the full conditional P(xi|x−i). In addition Gibbs sampling can be quite slow. A
more general MCMC algorithm is Metropolis Hastings (MH) (MLPP 24.3).

The basic idea in MH is that at each step, we propose to move from the current state x to a new state x′

with probability q(x′|x), where q is the proposal distribution (sometimes also called the kernel). Note, the
meaning of this proposal distribution q, is somewhat different than the one used for rejection or importance
sampling. You are free to choose any kind of proposal distribution you want, subject to some conditions.
This flexibility makes MH quite powerful. A commonly used proposal is a symmetric Gaussian distribution
centered on the current state q(x′ |x, Σ); this is called a Random walk Metropolis algorithm. If we use
a proposal of the form q(x′|x) = q(x′), where the new state is independent of the old state, we get a method
known as the independence sampler, which is similar to importance sampling (see Section 22).

Having proposed a move to x′, we then decide whether to accept this proposal or not according to a condition
which ensure that the fraction of time spent in each state is proportional to P∗(x). If the proposal is accepted,
the new state is x′, otherwise we remain at the old/current state x, which is equivalent to repeating the sample.
If the proposal is symmetric, so q(x′|x) = q(x|x′), the acceptance probability is given by the following formula:

r = min

(
1,
P∗(x′)
P∗(x)

)
(23.1)

where if x′ is more probable than x, we definitely move to the new state, but even if it is not, there is some

chance given by the ratio P
∗(x′)
P∗(x) . So instead of greedily moving to only more probable states, we occasionally

allow “downhill” moves to less probable states. You can prove that this scheme ensures that the fraction of
time spent in each state x is proportional to P∗(x). If the proposal is assymetric, i.e. q(x′|x) 6= q(x|x′), we
need the Hastings correction, which is given by:

r = min

(
1,
P∗(x′)/q(x′|x)

P∗(x)/q(x|x′)

)
(23.2)

102

Machine Learning Notes Ahmad Humayun

This correction is needed to compensate for the fact that the proposal distribution itself might favor certain
states. Note that here P∗ could be an unnormalized distribution.

Algorithm 7: Metropolis Hastings (MH) Algorithm

Input: The initial state x(0)

1 for s := {0, 1, 2, . . . } do
2 Sample x′ ∼ q(x′ |x(s))

3 Compute acceptance probability: α = P∗(x′)/q(x′|x(s))
P∗(x(s))/q(x(s)|x′)

4 Compute: r = min(1, α)
5 Sample: u ∼ U(0, 1)
6 Set new sample to:

x(s+1) =

{
x′ if u < r

x(s) if u ≥ r

Output: Return the set of samples {x(0), x(1), x(2), . . . }

• It can be shown that Gibbs sampling is a special case of MH (MLPP 24.3.2). It turns out that this would be
the case when the proposal distribution is:

q(x′|x) = P(x′i|x−i) I(x′−i = x−i) (23.3)

That is, we move to a new state where xi is sampled from its full conditional, but x−i is left unchanged. You
can also prove that the acceptance rate of each proposal is 1. Although that doesn’t mean that Gibbs will
converge rapidly since it updates one coordinate at a time.

• (MLPP 24.3.3) For a given target distribution P∗, a proposal distribution q is valid or admissible if it gives
a non-zero probability of moving to the states that have non-zero probability in the target. Formally we can
write this:

supp(P∗) ⊆ supp(q(·|x)) (23.4)

For example, a Gaussian random walk proposal has non-zero probability density on the entire state space.
and hence is a valid proposal for any continuous state space.

• Why MH works? (MLPP 24.3.6): To prove that the MH procedure samples from P∗, we need to see that
it defines a Markov chain with the following transition matrix:

P(x′|x) =

{
q(x′|x) r(x′|x) if x′ 6= x

q(x|x) +
∑

x′ 6=x q(x
′|x)(1− r(x′|x)) otherwise

(23.5)

This follows from a case analysis: if you move to x′ from x, you must have proposed it (with probability
q(x′|x)) and it must have been accepted (with probability r(x′|x)); otherwise you stay in state x, either
because that is what you proposed (with probability q(x|x)), or because you proposed something else (with
probability q(x′|x)) but it was rejected (with probability 1− r(x′|x)).

Let us analyze this Markov chain (see Section 16). A chain satisfies detailed balance if:

P(x′|x)P∗(x) = P(x|x′)P∗(x′) (23.6)

We also showed that if a chain satisfies detailed balance, then P∗ is its stationary distribution. We can prove
that the MH algorithm defines a transition function that satisfies detailed balance and hence that P∗ is its
stationary distribution. Furthermore, from Theorem 16.1, this distribution is unique, since the chain is ergodic
and irreducible.

103

Ahmad Humayun Machine Learning Notes

• Suppose we have a set of models with different numbers of parameters, e.g. mixture models in which the
number of mixture components is unknown. The difficulty with this approach arises when we move between
models of different dimensionality. The trouble is that when we compute the MH acceptance ratio, we are
comparing densities defined in different dimensionality spaces, which is meaningless. It is like trying to
compare a sphere with a circle. One solution is to use reversible jump MCMC (RJMCMC) (MLPP
24.3.7), where you augment the low dimensional space with extra random variables so that the two spaces
have a common measure.

• We start MCMC from an arbitrary initial state. Only when the chain has “forgotten” where it started from
will the samples be coming from the chain’s stationary distribution. Samples collected before the chain has
reached its stationary distribution do not come from P∗, and are usually thrown away. The initial period,
whose samples will e ignored is called the burn-in phase (MLPP 24.4.1). The amount of time it takes for
a Markov chain to converge to the stationary distribution, and forget its initial state, is called the mixing
time. It is difficult to diagnose when the chain has burned in - this is one of the fundamental weaknesses of
MCMC.

• A natural question to ask is: how many chains should we run (MLPP 24.4.5)? We could either run one long
chain to ensure convergence, and then collect samples spaced far apart, or we could run many short chains, but
that wastes the burning time. In practice, it is common to run a medium number of chain (say 3) of medium
length (say 100,000 steps), and to take samples from each after discarding the first half of the samples. If we
initialize at a local mode, we may be able to use all samples, and not wait for burn-in.

• Sometimes we can improve the efficiency of MCMC sampling by introducing dummy auxiliary variables
(MLPP 24.5), in order to reduce correlation between the original variables. If the original variables are denoted
by x, and the auxiliary variables by z, we require that

∑
z P(x, z) = P(x), and that P(x, z) is easier to sample

from than just P(x). If we meet these two conditions, we can sample in the enlarged model, and then throw
away the sampled z values, thereby recovering samples from P(x).

• One method using auxiliary variables is slice sampling (MLPP 24.5.2). Let’s consider sampling from a
univariate, but multimodal distribution P(x). Slice sampling will improve our ability to make large moves by
adding an auxiliary variable z. We define a joint distribution as follows:

P̃(x, z) =

{
1/Zp if 0 ≤ z ≤ P̃(x)

0 otherwise
(23.7)

where Zp =
∫
P̃(x)dx, i.e. Zp is the normalization factor for the distribution P(x). The marginal distribution

over x is given by:∫
P̃(x, z)dz =

∫ P̃(x)

0

1

Zp
dz =

P̃(x)

Zp
= P(x) (23.8)

so we can sample from P(x) by sampling from P̃(x, z) and then ignoring z. The full conditionals have the
form:

P(z|x) = U[0,P̃(x)](z) (23.9)

P(x|z) = UA(x) (23.10)

where A = {x : P̃(x) ≥ z} is the set of points on or above the chosen height z. This corresponds to a slice
through the distribution, hence the term slice sampling.

In practice, it can be difficult to identify the set A. So we can use the following approaches: construct as
interval xmin ≤ x ≤ xmax around the current sample x(s) of some width. We then test to see if each end point
lies within the slice. If it does, we keep extending in the direction until it lies outside the slice. This is called

104

Machine Learning Notes Ahmad Humayun

stepping out. A candidate value x′ is then chosen uniformly from this region. If lies within the slice, it is
kept, so x(s+1) := x′. Otherwise, we shrink the region such that x′ forms one end and such that the region
still contains x(s). Then another sample is drawn. We continue in this way until a sample is accepted. To
apply to a multivariate distributions, we can sample one extra auxiliary variable for each dimension. The
advantage of slice sampling over Gibbs is that it does not need a specification of the full conditionals, just
the unnormalized joint. The advantage of slice sampling over MH is that it does not need a user-specified
proposal distribution.

• For an Ising model of the form P(x) = 1
Z

∏
e fe(xe), where the edge factor fe is defined by

[
eJ e−J

e−J eJ

]
, where

J is the edge strength. Gibbs sampling in such models can be slow when J is large in absolute value, because
neighboring states can be highly correlated. The Swendsen Wang algorithm (MLPP 24.5.3) is a auxiliary
variable MCMC sampler, which mixes much faster, at least for the case of attractive models with J > 0. The
key idea is to split the model into:

ge(xe, ze = 0) =

[
e−J e−J

e−J e−J

]
, ge(xe, ze = 1) =

[
eJ − e−J 0

0 eJ − e−J
]
,

1∑
ze=0

ge(xe, ze) = fe(xe)

(23.11)

So if we sample from ge and then throw away z samples, we can get valid x samples from the original
distribution. This is simply done by first collecting connecting components with the same label. Each
connected component is split into multiple components by setting edges to 0 with the probability p = e−2J .
We randomly select one of these sub-components and uniformly at random switch the state ±1 for all the
variables in that component. This would be a new sample x(s+1).

• Simulated Annealing (SA) (MLPP 24.6.1) is a stochastic algorithm that attempts to find the global
optimum of a black-box function f(x). It is closely related to the MH algorithm for generating samples
from a probability distribution. SA can be used for generating samples for both discrete and continuous
distribution. The key quantity is the Boltzmann distribution which specifies that the probability of being
in any particular state x is given by:

P(x) ∝ exp (−f(x)/T) (23.12)

where f(x) is the “energy” of the system and T is the temperature. As the temperature approaches 0 (so
the system is cooled), the system spends more and more time in its minimum energy (most probable) state.
At high temperatures R� 1, the surface approximately flat, and hence it is easy to move around (i.e. to avoid
local optima). As the temperature cools, the largest peaks become larger, and the smallest peaks disappear.
By cooling slowly enough, it is possible to “track” the largest peak, and thus find the global optimum. This
is an example of a continuation method.

We can generate an algorithm from this as follows. At each step, sample a new state according to some
proposal distribution x′ ∼ q(·|x(s)). For real-valued parameters, this is often simply a random walk proposal,
x′ = x(s) + εs, where εs ∼ N (0,Σ). For discrete optimization, other kinds of local moves must be defined.
Having proposed a new state, we compute:

α = exp
((
f(x(s))− f(x′)

)
/T
)

(23.13)

We then accept the new state (i.e. x(s+1) := x′) with probability min(1, α), otherwise we stay in the current
(i.e. x(s+1) := x(s)). This means that if the new state has lower energy (is more probable), we will definitely
accept it, but if it has higher energy (i.e. less probable), we might still accept, depending on the current
temperature. Thus the algorithm allows “down-hill” moves in probability (up-hill in energy space), but less
frequently as the temperature drops.

105

Ahmad Humayun Machine Learning Notes

The rate at which the temperature changes over time is called the cooling schedule. It has been shown
that if one cools sufficiently slowly, the algorithm will provably find the global optimum. Finding the best
cooling schedule for a problem is the major drawback of simulated annealing. For MAP state estimation, we
just return the state with the largest value found once the algorithm converges.

24 Decision Theory

• (AI R&N 16.1) The agent’s preferences are captured by a utility function, U(s), which expresses desirability
of a given state s. The expected utility can be given by:

EU(a|e) =
∑
s′

P(R(a) = s′ | a, e)U(s′) (24.1)

where P(R(a) = s′ | a, e) is the probability of outcome s′, given evidence observations e, and the action a.
The principle of maximum expected utility (MEU) says that a rational agent should choose the action
that maximizes the agent’s expected utility:

a = arg max
a

EU(a|e) (24.2)

• Axioms of utility theory (AI R&N 16.2.1)

• (AI R&N 16.3.3) Usually we are really working with estimates ÊU(a|e) of the true expected utility. We
will assume, kindly perhaps, that the estimates are unbiased, that is, the expected value of the error,
E(EU(a|e) − ÊU(a|e)), is zero. In that case, it still seems reasonable to choose the action with the highest
estimated utility and to expect to receive that utility, on average, when the action is executed.

• (AI R&N 16.5) Decision networks (or influence diagrams) combine Bayesian networks with additional
node types for actions and utilities. In its most general form, a decision network represents information about
the agents current state, its possible actions, the state that will result from the agents action, and the utility of
that state. Chance nodes (oval) represent random variables; Decision nodes (rectangle) represents where
we have a choice of actions; Utility nodes (diamond) represents the agent’s utility function.

• Information value theory (AI R&N 16.6) enables an agent to choose what information to acquire.

• (AI R&N 16.6) Sometimes, solving a problem involves finding more information before making a decision. The
value of information is defined as the expected improvement in utility compared with making a decision
without the information.

25 Complex Decisions and Reinforcement Learning

• Reinforcement learning (RL) addresses the question of how an autonomous agent that senses and acts in
its environment can learn to choose optimal actions to achieve its goals (Mitchell 13). Each time the agent
performs an action in its environment, a trainer may provide a reward or penalty to indicate the desirability
of the resulting state. The task of the agent is to learn from this indirect, delayed reward, to choose sequences
of actions that produce the greatest cumulative reward. Q-learning is one algorithm which can acquire
optimal control strategies from delayed reward, even when the agent has no prior knowledge of the effects of
its actions on the environment.

• The agent can do two things: (1) observe the state of its environment; or (2) perform a set of actions
to alter this state. The aim of the agent would be to learn a policy (also called control strategy) for
choosing actions that achieve its goals. We assume that the goals of the agent can be defined by a reward
function that assigns a numerical value – an immediate payoff – to each distinct action the agent may take

106

Machine Learning Notes Ahmad Humayun

Agent

Environment

ActionRewardState s0 s1 s2
a0

r0
a1

r1
a2

r2

(a) An agent interacting with its environment. It can perform any action a ∈ A given
its state s ∈ S. Each time it reaches at, the trainer provides a reward rt for ending up
in state st+1 - this indicates the desirability of the state-action transition. The agent’s
task is to learn a control policy π : S → A, that maximizes the expected sum of these
rewards, with future rewards discounted exponentially by their delay.

Figure 21

from each distinct state. In general, we are interested in any type of agent that must learn to choose actions
that alter the state of its environment and where a cumulative reward function is used to define the quality of
any given action. Here we will consider settings in which the actions have deterministic or non-deterministic
outcomes, and settings in which the agent has or does not have prior knowledge about the effects of its actions
on the environment.

• The target function to be learned in RL is a control policy π : S → A, that outputs an appropriate action a
from the set A, given the current state s from the set S (see Figure 21a) (Mitchell 13.1). But note that this
is different from other function approximation tasks in several ways:

1. Delayed reward: We are trying to learn the function π, where given a state, you are trying to learn an
optimal action a = π(s). Previously in such settings, training is in the form of (s1, a1), (s2, a2), . . . , (sn, an).
In RL, however, training information is not available in this form, rather the trainer provides only a se-
quence of immediate reward values as the agent executes its sequence of actions. In other words, RL
differs from supervised learning that there is no presentation of input/output pairs. Instead, after choos-
ing an action the agent is told the immediate reward and the subsequent state, but is not told which
action would have been in its best long-term interests. The agent therefore faces the problem of tem-
poral credit assignment: determining which of the actions in the sequence are to be credited with
producing the eventual rewards.

2. Exploration: In RL, the agent influences the distribution of training examples by the action sequence
it chooses. This raises the question of which experimentation strategy produces most effective training.
Should the agent explore the unknown states and actions, or exploit states and actions that the agent
has learned to lead to high cumulative reward.

3. Partially observable states: Most of the time the agent cannot observe/sense its complete state. For
instance a robot’s forward facing camera would not know what is behind it. In such cases an agent might
take actions to improve the observability of its environment - plus the agent might not consider its past
observations before taking actions.

4. Life-long learning: Unlike isolated function approximation tasks, robot learning often requires the
robot to learn several related tasks within the same environment, using the same sensors (dock to the
charger, take out the trash, etc). This raise the possibility of learning from previous experience to reduce
sample complexity when learning new tasks.

• At each discrete time step t in a Markov Decision Process (MDP) (Mitchell 13.2), the agent senses the
current state st, chooses a current action at, and performs it. The environment responds by giving the agent

107

Ahmad Humayun Machine Learning Notes

a reward rt , r(st, at) and by producing a the succeeding state st+1 = δ(st, at). The δ function is called
transition model - where the outcome can also be stochastic P(s′|st, at) as we’ll see later. We assume the
Markovian property i.e. the probability of reaching state s′ from s depends only on s and not the history of
earlier states. Here the functions δ and r are part of the environment and are not necessarily known to the
agent. In an MDP, the function δ(st, at) and r(st, at) depend only on the current state and action, and not
on earlier states or actions. In short, an MDP is defined by the set of states S, the set of actions A, and the
two functions δ(·, ·), and r(·, ·).
The task of the agent is to learn a policy π : S → A, for selecting its next action at based on the current
observed state, i.e. π(st) = at. One obvious objective function would require to learn the policy that produces
the greatest possible cumulative reward for the robot over time. From state st you would like to maximize
the cumulative value V π(st) (or maximize your utility):

V π(st) = rt + γrt+1 + γ2rt+2 + . . . (25.1)

=

∞∑
i=0

γirt+i (25.2)

where the sequence of rewards rt+i is generated by beginning at state st and by repeatedly using the policy
π to select actions as described above (i.e. at = π(st), at+1 = π(st+1) etc.). Here 0 ≤ γ < 1 is a constant
that determines the relative value of delayed versus immediate rewards. In particular, rewards received i time
steps into the future are discounted exponentially by a factor of γi. Note if γ = 0, only the immediate reward
is considered. In this form, the term is V π(s) is often referred to as discounted cumulative rewards (also
known as infinite-horizon discounted model). Other possible rewards are the finite horizon reward,∑h
i=0 rt+i, and the average reward, limh→∞

1
h

∑h
i=0 rt+i. One problem with the average reward model is

that there is no way to distinguish between two policies, one of which gains a large amount of reward in the
initial phases and the other of which does not. The finite horizon model is appropriate when the agent’s
lifetime is known; one important aspect of this model is that as the length of the remaining lifetime decreases,
the agent’s policy may change. A system with a hard deadline would be appropriately modeled this way.

We are now in a position to state precisely the agent’s learning task. We require that the agent learn a policy
π that maximizes V π(s) for all states s. We will call this an optimal policy and denote it by π∗:

π∗ = arg max
π

V π(s), ∀s (25.3)

We will denote V π
∗
(s) , V ∗(s), which gives the maximum discounted cumulative reward that the agent can

obtain starting from state s.

• The goal state is the state where the agent should eventually reach. Once the agent reaches that state, it
should not take an action to go out of it. That is why it is also as an absorbing state. A policy that is
guaranteed to reach a terminal state is called a proper policy.

• (AI R&N 17.1.2) π essentially tells the agent what action to execute at state s. The expected utility obtained
by executing policy π:

V π(s) = E

[∞∑
t=0

γtR(st)

]
(25.4)

where the R(st) is considered as a random variable for the reward received for being in some state at time
t. Hence the expectation is with respect to the probability distribution over state sequences determined by
s and π. As before, if we start at state s, we will choose the policy π∗s with the highest expected utility:
π∗s = arg maxπ V

π(s). The utility function V (s) allows the agent to select actions by using the principle of
maximum expected utility:

π∗(s) = arg max
a∈A

∑
s′

P(s′|s, a)V (s′) (25.5)

108

Machine Learning Notes Ahmad Humayun

Note that A , A(s) i.e. we only consider actions possible at a particular state.

• One way to find an optimal policy is through Value Iteration (AI R&N 17.2). The basic idea is to calculate
the utility of each state and then use the state utilities to select an optimal action in each state.

There is a direct relationship between the utility of a state and the utility of its neighbors: the utility of a
state is the immediate reward for that state plus the expected discounted utility of the next state, assuming
that the agent chooses the optimal action. That is, the utility of a state is given by:

V (s) = R(s)︸︷︷︸
Reward at s

+ γ max
a∈A

∑
s′

P(s′ | s, a)V (s′)︸ ︷︷ ︸
Expected utility on taking action a

(25.6)

This is called the Bellman Equation. The Bellman equation is the basis of the value iteration algorithm for
solving MDPs. The value iteration algorithm is an iterative procedure where we initialize V (s) with arbitrary
values - then we calculate Equation 25.6 for each state repeatedly until convergence. The iteration step, called
the Bellman update, looks like this:

Vn+1(s) := R(s) + γ max
a∈A

∑
s′

P(s′ | s, a)Vn(s′) (25.7)

If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium, in which case the
final utility values must be solutions to the Bellman equations. In fact, they are also the unique solutions,
and the corresponding policy (obtained using Equation 25.5) is optimal.

• Another way to find an optimal policy is through Policy Iteration (AI R&N 17.3). Policy iteration alternates
the following two steps, beginning from some initial policy π0: (1) Policy evaluation: given a policy πn,
calculate Vn , V πn , the utility of each state if πn were to be executed; (2) Policy improvement: calculate a
new MEU policy πn+1, using one-step look-ahead based on Vn (as in Equation 25.5). The algorithm terminates
when the policy improvement step yields no change in the utilities. At this point, we know that the utility
function Vn is a fixed point of the Bellman update, so it is a solution to the Bellman equations, and πn must
be an optimal policy.

The policy improvement step is obviously straightforward, but how do we implement the policy-evaluation
routine? It turns out that doing so is much simpler than solving the standard Bellman equations (which is
what value iteration does), because the action in each state is fixed by the policy. At the nth iteration, the
policy πn specifies the action πn(s) in state s. This means that we have a simplified version of the Bellman
equation 25.6 relating the utility of s (under πn) to the utilities of its neighbors:

Vn(s) = R(s) + γ
∑
s′

P(s′ | s, πn(s))Vn(s′) (25.8)

For policy improvement, you iterate over every state s and see if:

max
a∈A

∑
s′

P(s′ | s, a)Vn(s′) >
∑
s′

P(s′ | s, πn(s))Vn(s′) (25.9)

if so, then the policy for that state s is changed πn+1(s) := arg maxa∈A
∑
s′ P(s′ | s, a)Vn(s′).

• The algorithms we have described so far require updating the utility or policy for all states at once. It turns
out that this is not strictly necessary. In fact, on each iteration, we can pick any subset of states and apply
either kind of updating (policy improvement or simplified value iteration) to that subset. This very general
algorithm is called asynchronous policy iteration.

• Unlike before, where the agent always knew what the state is, the environment could only be partially
observable. The agent does not necessarily know which state it is in, so it cannot execute the action π(s)

109

Ahmad Humayun Machine Learning Notes

recommended for that state. Furthermore, the utility of a state s and the optimal action in s depend not
just on s, but also on how much the agent knows when it is in s. For these reasons, partially observable
MDPs (POMDPs) (AI R&N 17.4) are usually viewed as much more difficult than ordinary MDPs.

A POMDP has the same elements as an MDP the transition model P(s′|s, a), actions A (or A(s) if the
number of actions are limited by the state you are in), and reward function R(s) but, in addition, it also has
a sensor model P(e | s). The sensor model specifies the probability of perceiving evidence e in state s. This
could be extended to being conditioned on the action and the output state: P(e | s, a, s′). In addition belief
state b(s) - which is the distribution of what the agent thinks its actual state is. For instance the agent can
start with a uniform belief, meaning that its equally likely that it is anywhere. The agent can calculate its
current belief state as the conditional probability distribution over the actual states given the sequence of
percepts and actions so far. This is essentially done by filtering, where if the previous belief was b(s), and the
agent does an action a and then perceives evidence e, then the new belief state is:

b′(s′) = αP(e|s′)
∑
s

P(s′|s, a) b(s) (25.10)

b′ = Forward(b, a, e) (25.11)

The fundamental insight required to understand POMDPs is this: the optimal action depends only on the
agent’s current belief state. That is, the optimal policy can be described by a mapping π∗(b) from belief
states to actions. The decision cycle of a POMDP agent can be broken down into the following three steps:
(1) Given the current belief state b, execute the action a = π∗(b); (2) Receive percept e; (3) Set the current
belief state to Equation 25.11. Now we can think of POMDPs as requiring a search in belief-state space. Note
that the POMDP belief-state space is continuous, because a POMDP belief state is a probability distribution.
An action changes the belief state, not just the physical state. Hence, the action is evaluated at least in part
according to the information the agent acquires as a result.

If we calculate the probability that an agent in belief state b reaches belief state b′ after executing action a.
Now, if we knew the action and the subsequent percept, then Equation 25.11 would provide a deterministic
update to the belief state: b′ = Forward(b, a, e):

P(b′ | b, a) =
∑
e

P(b′ | e, a, b)
∑
s′

P(e | s′)
∑
s

P(s′ | s, a) b(s) (25.12)

where P(b′ | e, a, b) = 1 if b′ = Forward(b, a, e) and 0 otherwise. Equation 25.12 can be also viewed as the
transition model for the belief state. We can also define a reward function for belief states (i.e., the expected
reward for the actual states the agent might be in):

ρ(b) =
∑
s

b(s)R(s) (25.13)

Together, P(b′ | b, a) and ρ(b) define an observable MDP on the space of belief states. Furthermore, it can be
shown that an optimal policy for this MDP, π∗(b), is also an optimal policy for the original POMDP. In other
words, solving a POMDP on a physical state space can be reduced to solving an MDP on the corresponding
belief-state space. This fact is perhaps less surprising if we remember that the belief state is always observable
to the agent, by definition.

• Value iteration of POMDPs (AI R&N 17.4.2): Now that we have infinitely many belief states (since its
probabilities on beliefs), we can’t use the old value iteration algorithm. We make two observations:

1. Let the utility of executing a fixed conditional plan p starting in physical state s be αp(s). Then the
expected utility of executing p in belief state b is just

∑
s b(s)αp(s), or b · αp if we think of them both

as vectors. Hence, the expected utility of a fixed conditional plan varies linearly with b; that is, it
corresponds to a hyperplane in belief space.

110

Machine Learning Notes Ahmad Humayun

2. At any given belief state b, the optimal policy will choose to execute the conditional plan with highest
expected utility; and the expected utility of b under the optimal policy is just the utility of that conditional
plan:

V (b) = V π
∗
(b) = max

p
b · αp (25.14)

If the optimal policy π∗ chooses to execute p starting at b, then it is reasonable to expect that it might
choose to execute p in belief states that are very close to b.

From these two observations, we see that the utility function V (b) on belief states, being the maximum of a
collection of hyperplanes, will be piecewise linear and convex. In general, let p be a depth-d conditional plan
whose initial action is a and whose depth-d− 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑
s′

P(s′ | s, a)
∑
e

P(e | s′)αp.e(s′)

)
(25.15)

The recursion gives us a value iteration algorithm. The structure of the algorithm and its error analysis are
similar to those of the basic value iteration algorithm; the main difference is that instead of computing one
utility number for each state, POMDP-value iteration maintains a collection of undominated plans with their
utility hyperplanes.

• Up until now we have concentrated on making decisions in uncertain environments. But what if the uncer-
tainty is due to other agents and the decisions they make? And what if the decisions of those agents are in turn
influenced by our decisions? Game theory studies exactly this problem, and analyzes games with simulta-
neous moves and other sources of partial observability. Game theory describes rational behavior for agents in
situations in which multiple agents interact simultaneously. Solutions of games are Nash equilibria-strategy
profiles in which no agent has an incentive to deviate from the specified strategy. Game theory can be used in
at least two ways:

1. Agent design: Game theory can analyze the agent’s decisions and compute the expected utility for
each decision (under the assumption that other agents are acting optimally according to game theory).

2. Mechanism design: When an environment is inhabited by many agents, it might be possible to define
the rules of the environment (i.e., the game that the agents must play) so that the collective good of all
agents is maximized when each agent adopts the game-theoretic solution that maximizes its own utility.

• A single-move game (AI R&N 17.5.1) is one where all players take actions simultaneously and result of the
game is based on single set of actions. It has three components: (1) players; (2) actions - may are may not
be the same for all players; (3) payoff function that gives the utility to each player for each combination of
actions by all the players. Each player in a game must adopt and then execute a strategy (which is the name
used in game theory for a policy). A pure strategy is a deterministic policy; for a single-move game, a pure
strategy is just a single action. For many games an agent can do better with a mixed strategy, which is
a randomized policy that selects actions according to a probability distribution. A solution to a game is a
strategy profile in which each player adopts a rational strategy.

We say that a strategy s for player p strongly dominates strategy s′ if the outcome for s is better for p than
the outcome for s′, for every choice of strategies by the other player(s). Strategy s weakly dominates s′ if s
is better than s′ on at least one strategy profile and no worse on any other. It is rational to play a dominated
strategy. Dominant strategy means that an agent can adopt it without regard for the other strategies.

We say that an outcome is Pareto optimal if there is no other outcome that all players would prefer. An
outcome is Pareto dominated by another outcome if all players would prefer the other outcome.

When each player has a dominant strategy, the combination of those strategies is called a dominant strategy
equilibrium. In general, a strategy profile forms an equilibrium if no player can benefit by switching

111

Ahmad Humayun Machine Learning Notes

strategies, given that every other player sticks with the same strategy. An equilibrium is essentially a local
optimum in the space of policies. The mathematician John Nash proved that every game has at least one
equilibrium. The general concept of equilibrium is now called Nash equilibrium in his honor. Clearly, a
dominant strategy equilibrium is a Nash equilibrium, but some games have Nash equilibria but no dominant
strategies.

• (AI R&N 17.5.2) The simplest kind of multiple-move game is the repeated game, in which players face
the same choice repeatedly, but each time with knowledge of the history of all players previous choices. A
strategy profile for a repeated game specifies an action choice for each player at each time step for every
possible history of previous choices.

In repeated games, where the number of games is fixed, it is quite usual that the players don’t cooperate.
If we are having N games, the players are going to consider the Nth game as a single-move game, and
hence the outcome will be fixed by the dominant strategy equilibrium. The N − 1 game would now also be
treated similarly because the next game is fixed. By induction, both players will choose the dominant strategy
equilibrium for all games.

Players are more likely to cooperate when they don’t know which is the last game. For example, one equilibrium
strategy is for each player to be considerate unless the other player has ever been inconsiderate. This strategy
could be called perpetual punishment. At every step, there is no incentive to deviate from being considerate.
Perpetual punishment is the mutually assured destruction strategy of the prisoner’s dilemma: once either
player decides to be inconsiderate, it ensures that both players suffer a great deal. But it works as a deterrent
only if the other player believes you have adopted this strategyor at least that you might have adopted
it. Other strategies are more forgiving. The most famous, called tit-for-tat, calls for starting with being
considerate and then echoing the other player’s previous move on all subsequent moves.

• Mechanism design (AI R&N 17.6) can be used to set the rules by which agents will interact, in order to
maximize some global utility through the operation of individually rational agents. Sometimes, mechanisms
exist that achieve this goal without requiring each agent to consider the choices made by other agents.

• In Reinforcement Learning (RL) doesn’t have a complete model of the environment and doesn’t know
what the reward function is. In this case, RL observes rewards and learns an (nearly) optimal policy for the
environment.

• Q Learning (Mitchell 13.3) What evaluation function should the agent attempt to learn? One obvious choice
is V ∗. The agent should prefer state s1 over state s2 whenever V ∗ (s1) > V ∗ (s2), because the cumulative
future reward will be greater from s1. Of course, the agent’s policy must choose among actions, not among
states. The optimal action in state s is the action a that maximizes the sum of the immediate reward r(s, a)
plus the value V ∗ of the immediate successor state, discounted by γ:

π∗(s) = arg max
a

[r(s, a) + γV ∗(δ(s, a))] (25.16)

Thus, the agent can acquire the optimal policy by learning V ∗, provided it has perfect knowledge of the
immediate reward function r and the state transition function δ. When the agent knows about r and δ used
by the environment to respond to its actions, then it can then use the Equation 25.16 to calculate the optimal
action at any state s. This scheme is not always feasible because the agent needs to have perfect knowledge of
the functions δ and r, which is sometimes not the case. In cases where these functions are unknown, learning
V ∗ is of no use for selecting the optimal policy. In a more general setting, the agent can use the evaluation
function described next.

• Let Q(s, a) be the maximum reward when the agent takes actions a at state s:

Q(s, a) = r(s, a) + γV ∗(δ(s, a)) (25.17)

Note in Equation 25.16, we had π∗(s) , arg maxaQ(s, a). This transformation is important because if the
agent learns this Q Function (Mitchell 13.3.1) instead of the V ∗ function, it will be able to select optimal

112

Machine Learning Notes Ahmad Humayun

actions even when it has no knowledge of the functions r and δ. Part of the beauty of Q learning is that the
evaluation function is defined to have precisely this property–the value of Q for the current state and action
summarizes in a single number all the information needed to determine the discounted cumulative reward
that will be gained in the future if action a is selected in state s.

• Now, how to learn the Q Function (Mitchell 13.3.2)? The key problem is finding a reliable way to estimate
the training values for Q, given only a sequence of immediate rewards r spread out over time. This can be
achieved through iterative approximation. The first thing to notice is the relationship between Q and V ∗:

V ∗(s) = max
a′

Q(s, a′) (25.18)

Using this we can rewrite Equation 25.17 as

Q(s, a) = r(s, a) + γmax
a′

Q(δ(s, a), a′) (25.19)

This equation says that given that the agent was in state s and it took action a, it ended up in state
s′ , δ(s, a). Given this information, we can choose an action a′ from s′ which would maximize the agent’s
discounted cumulative reward. This indeed points to an iterative algorithm. You can start with Q which is
set to all zero, and apply Equation 25.19 at each step to incrementally build the Q function. One important
thing to note is that the agent uses its current Q̂ values for the new state s′ to refine its of Q̂(s, a) for the
previous state s. Another key point to observe is even though Equation 25.19 is defined in terms of r and δ,
the agent does not need to know these general functions to apply the training rule. The Q learning algorithm
for deterministic MDP is given in Algorithm 8. In the algorithm we will use the symbol Q̂ to refer to the
learner’s estimate, or hypothesis, of the actual Q function. Q̂ can be represented as a table with state-action
pairs.

Algorithm 8: Q Learning algorithm for deterministic MDP

1 Initialize Q̂(s, a) := 0 for all s and a
2 Observe the current state s
3 repeat
4 Select an action a and execute it
5 Receive immediate reward r(s, a)
6 Observe new state s′

7 Update the table entry for Q̂(s, a) as follows (given by Equation 25.19):

Q̂(s, a) := r(s, a) + γmaxa′ Q̂(s′, a′)
8 s := s′

9 until forever

Using the algorithm the agent’s estimate Q̂ converges in the limit to the actual Q function, provided the
system can be modeled as a deterministic MDP, the reward function r is bounded, and actions are chosen so
that every state-action pair is visited infinitely often.

• Note that if we start with Q being zero everywhere, the agent will make no changes to any Q̂ table entry until
it happens to reach the goal state and receive a nonzero reward. This will result in refining the Q̂ value for
the single transition leading to the goal state. Of course, then doing only one experiment would not help in
making Q̂ converge to Q. A remedy is to run multiple episodes of experiments for training. In each episode
the agent starts at a randomly chosen state and is allowed to execute actions until it reaches the absorbing
goal state. If we run repeated identical episodes in this fashion, the frontier of nonzero Q̂ values will creep
backward from the goal state at the rate of one new state-action transition per episode.

• Two general properties of Q learning algorithm that hold for any deterministic MDP in which the rewards
are non-negative, assuming we initialize Q̂ to all zeros: (1) the values of Q̂ will never decrease during training

113

Ahmad Humayun Machine Learning Notes

(Q̂n+1(s, a) ≥ Q̂n(s, a)); (2) through-out the training process every Q̂ value will remain in the interval
0 ≤ Q̂n(s, a) ≤ Q(s, a).

Does Q learning converge (Mitchell 13.3.4)?:

Theorem 25.1. Consider a Q learning agent in a deterministic MDP with bounded rewards (∀s, a) |r(s, a)| ≤ c.
The Q learning agent uses the training rule of Equation 25.19, initializes its table Q̂(s, a) to arbitrary finite
values, and uses a discount factor γ such that 0 ≤ γ < 1. Let Q̂n(s, a) denote the agent’s hypothesis Q̂(s, a)
following the nth update. If each state-action pair is visited infinitely often, then Q̂n(s, a) converges to Q(s, a)
as n→∞ for all s, a.

They key idea underlying the proof of convergence is that the table entry Q̂(s, a) with the largest error must
have its error reduced by a factor of γ whenever it is updated. The reason is that its new value depends
only in part on error prone Q̂ estimates, with the remainder depending on the error-free observed immediate
reward r. Q̂n is the agent’s table of estimated Q values after n updates. Let ∆n be the maximum error in
Q̂n:

∆n , max
s,a
|Q̂n(s, a)−Q(s, a)| (25.20)

The updated Q̂n+1(s, a) for any s, a is at most γ times the maximum error in the Q̂n table, ∆n. The largest
error in the initial table, ∆0, is bounded because values of Q̂0(s, a) are bounded for all s, a. Now after the first
interval during which each s, a is visited, the largest error in the table will be at most γ∆0. After k intervals,
the error will be at most γk∆0. Since each state is visited infinitely often, the number of such intervals is
infinite, and ∆n → 0 as n → ∞. This rule also applies to the Value Iteration using Bellman updates (see
Section 25).

• In Algorithm 8, the agent runs the risk that it will over-commit to actions that are found during early training
to have high Q̂ values. The above theorem required each state-action to occur infinitely many times, which
will not occur if we always select actions that maximize the current Q̂(s, a). Hence we take a probabilistic
approach (Mitchell 13.3.5), where selecting an action ai with current state s is given by:

P(ai|s) =
kQ̂(s,ai)∑
j k

Q̂(s,aj)
(25.21)

where k > 0 - larger values of k will assign higher probabilities to actions with high Q̂ values, causing the
agent to exploit what it has learned. In contrast if k is smaller than 1, you will assign higher probabilities to
state with low Q̂ values. Note, k = 1 will result in uniform sampling. You can also make the agent choose a
lower k initially to encourage exploration, and gradually shift to higher k to encourage exploitation.

• (Mitchell 13.3.6) Note that if we start with Q̂ set to zero, and we run the first episode - you can run Equa-
tion 25.19 in reverse chronological order to update Q̂ over the whole state-action path taken in the first episode.
Even though this clearly requires more memory (to completely store the state-action transitions) the algo-
rithm will converge in fewer episodes. Another strategy to improve convergence is to store past state-action
transitions and after some episodes use them to update Q̂(s, a) values.

• If the agent has the knowledge of the state-transition function δ(s, a), or the reward function r(s, a), then there
are many more efficient methods are possible. For example if performing external actions is expensive the
agent may simply ignore the environment and instead simulate it internally, efficiently generating simulated
actions and assigning the appropriate simulated rewards. DYNA architecture performs a number of simulated
actions after each step executed in the external world.

• Now what if the resulting state s′ on taking an action a at state s is non-deterministic, or the reward r(s, a) is
non-deterministic (Mitchell 13.4). In such cases, the function δ(s, a) r(s, a) can be viewed as first producing a

114

Machine Learning Notes Ahmad Humayun

probability distribution over outcomes based on s and a, and then drawing an outcome at random according
to this distribution. When these probability distributions depend solely on s and a (e.g., they do not depend
on previous states or actions), then we call the system a non-deterministic MDP. We can change the
adjust the Q learning algorithm to take this into account. This is done by redefining Equation 25.19 as:

Q(s, a) = E[r(s, a)] + γ
∑
s′

P(s′ | s, a) max
a′

Q(s′, a′) (25.22)

where P(s′ | s, a) is the probability of getting to state s′ upon taking action a in state s. Moreover, rather than
getting the deterministic reward r, we have extended the model to consider the expectation of the reward
given the state s and action a.

Now we also need a different training rule for convergence in this non-deterministic setting. This is because
the reward would always be different due to its non-deteministic nature. This difficulty can be overcome by
modifying the training rule so that it takes a decaying weighted average of the current Q̂ value and its revised
estimate:

Q̂n(s, a) := (1−αn)Q̂n−1(s, a) +αn[r+ max
a′

Q̂n−1(s′, a′)], where αn =
1

1 + visitsn(s, a)
(25.23)

where s and a here are the state action updated during the nth iteration, and where visitsn(s, a) is the total
number of times the state-action pair has been visited up to and including the current iteration. αn goes
down with the number of times you encounter a particular state-action transition.

Deep learning is an unsupervised way to learn good feature representations

115

	Probability
	Generative Models for Discrete Data
	Gaussian Models
	Bayesian Statistics
	Frequentist Statistics
	Linear Regression
	Logistic Regression
	Generalized Linear Models and the Exponential Family
	Directed Graphical Models (Bayes Network / Belief Network)
	Mixture Models and the EM Algorithm
	Latent Linear Models
	Sparse Linear Models
	Kernels
	Gaussian Processes
	Adaptive Basis Function Models
	Markov and Hidden Markov Models
	State Space Models
	Undirected Graphical Models (Markov Random Fields)
	Exact inference for Graphical Models
	Variational Inference
	More Variational Inference
	Monte Carlo Inference
	Markov chain Monte Carlo (MCMC) inference
	Decision Theory
	Complex Decisions and Reinforcement Learning

