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Learning a Confidence Measure
for Optical Flow

Oisin Mac Aodha, Ahmad Humayun, Marc Pollefeys and Gabriel J. Brostow

Abstract—We present a supervised learning based method to estimate a per-pixel confidence for optical flow vectors. Regions
of low texture and pixels close to occlusion boundaries are known to be difficult for optical flow algorithms. Using a spatiotemporal
feature vector, we estimate if a flow algorithm is likely to fail in a given region. Our method is not restricted to any specific class of
flow algorithm, and does not make any scene specific assumptions. By automatically learning this confidence we can combine
the output of several computed flow fields from different algorithms to select the best performing algorithm per pixel.
Our optical flow confidence measure allows one to achieve better overall results by discarding the most troublesome pixels. We
illustrate the effectiveness of our method on four different optical flow algorithms over a variety of real and synthetic sequences.
For algorithm selection, we achieve the top overall results on a large test set, and at times even surpasses the results of the best
algorithm among the candidates.

Index Terms—Optical flow, confidence measure, Random Forest, synthetic data, algorithm selection.
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1 INTRODUCTION

B ENCHMARKING datasets such as the Middlebury Op-
tical Flow Evaluation Table [1] have motivated im-

provements in the accuracy of optical flow algorithms.
These evaluations, while also useful for highlighting areas
of future research, can still leave practitioners uncertain
about how to capitalize on the rankings. It is difficult
for most non-experts to assess how suitable a particu-
lar algorithm will be, given their data. The expense and
difficulty of obtaining ground truth for real-world scenes
when evaluating algorithm/scene pairings is enormous. This
leaves practitioners trying to choose which among the very
few image-pairs is most like their test video at hand. To
a limited extent, each algorithm can be used to self-assess
its own performance. Algorithms that seek to optimize a
non-convex energy term at test time, know only that a
local optimum has been reached once they have converged.
This energy state is often interpreted as a confidence,
but it is not directly comparable between several different
algorithms due to different energy terms or priors being
utilized. In our previous work, we introduced a supervised
learning based confidence measure for optical flow that
gives us a probabilistic estimate of confidence [2]. We
do not rely on any scene assumptions and our confidence
can be computed for any type of flow algorithm. In this
paper, we improve and carefully measure the accuracy of
our confidence measure. We also propose a meta-algorithm
that automatically chooses the most appropriate algorithm
for the situation.
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Fig. 1: Optical Flow Confidence. A) Input image, one of two.
B) Computed flow field using [3]. C) Confidence image: green
indicates low confidence while yellow is high. Our algorithm
correctly identifies confidence for situations such as 4 motion
discontinuities, ♦ high and � low texture.

We define confidence, ψ, for each flow vector as the
probability of that flow being below some specified error
threshold εsepe, where εsepe is the amount of end point
error acceptable to the user. Confidence measures for
optical flow have been explored in the past. However,
they have typically been algorithm-type specific [4], or
have made simplifying assumptions about the statistics of
local flow [5]. We seek out the correlation between good
performance by a constituent algorithm and specific local
situations that can be discerned statistically from the image
sequence. Fig. 1 illustrates a typical confidence image from
our algorithm.

The semantic segmentation community has been devel-
oping successful techniques to find correlations between
object-classes and appearance (e.g., [6] and [7]). Using
similar intuition, we learn the relationship between spa-
tiotemporal image features and algorithm success. We at-
tempt to predict the best algorithm locally, given a set of
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candidate flow algorithms, where the “best” algorithm is
the one that is predicted to yield the best accuracy. We
assume that implementations of all the algorithms under
consideration are available. Recognizing that most flow
algorithms may be ported to leverage GPU processing,
we accept the fixed cost of running all of them on a
given sequence as acceptable in pursuing the best overall
accuracy. We extend our previous work [2] and make the
following contributions:

• a thorough evaluation of our optical flow confidence
measure on new flow algorithms and several new
sequences

• comparison to other baseline confidence measures
• separate confidence in X and Y directions
• improved accuracy for optical flow by automatically

selecting among known constituent algorithms
• an improved system for easily producing synthetic

ground truth optical flow data for scenes with moving
objects.

Experiments show our confidence measure outperforms
other general purpose measures. Additionally, we automat-
ically combine the output of multiple different algorithms
which gives better results than any individual algorithm.

2 RELATED WORK

We examine the relevant work in optical flow confidence
estimation. For an overview of traditional optical flow
approaches see [8], and [1] or [3] for more current tech-
niques. We also review work related to algorithm selection;
defined as finding the algorithm from a candidate set that
produces the most accurate result for a given task-algorithm
combination.

Confidence Estimation
Early confidence measures for optical flow were only
concerned with intensity information. Simoncelli et al. [9]
proposed a method based on the gradient of the intensity
in a window about the patch. The justification is that one
would expect computed flow to be accurate in areas of high
gradient e.g., high texture regions and image corners. Their
method does not just return a single confidence estimate
for each vector, but a 2D distribution which they use to
represent uncertainty. Anandan [10] also express confidence
as a 2D measure of the curvature in the sum of squared
differences surface computed during candidate matching.
Their choice of 2D confidence is that it can represent the
certainty of the flow in a particular direction (both x and
y). Uras et al. [11] look at the spatial Hessian matrix of
the local intensity patch. Jähne et al. [12] present several
methods based on an eigenvalue decomposition of the 3D
structure tensor. Some of their measures look at the tem-
poral gradient but do not take the computed flow field into
account. In effect, these measures attempt to predict how
difficult it will be to determine flow for a particular image
pair by analyzing their spatial and temporal gradients. Our
approach differs in that it learns a mapping between flow
algorithm success and the spatiotemporal image data.

Algorithm-specific confidence estimation techniques also
exist. Kybic and Nieuwenhuis [4] describe a method which
works for optical flow algorithms that minimize spatially
decomposable variational image similarity terms, such
as [13], [14]. Their bootstrap resampling approach must
compute the flow field over multiple iterations (ten in their
paper), while at each iteration, the input data is perturbed
and the variability of the result is measured. As noted by
the authors, their algorithm may succeed in detecting the
variance in the error but not the bias. Bruhn and Weick-
ert [15] propose a confidence measure for variational optical
flow methods where confidence is inversely proportional
to the local energy of the objective being minimized. For
other examples of algorithm specific methods which do not
generalize across optical flow algorithms see [4], [16], [17].

Kondermann et al. [18] propose a PCA based method
where confidence is defined as how well a learned linear
subspace approximates the test flow vector. In follow up
work [5], they learn a probabilistic model of the flow field
in local windows from training data. These flow vectors are
then modeled as a multivariate Gaussian distribution and
a confidence measure is proposed based on statistical test
theory. These two approaches are most closely related to
ours in that they attempt to learn a model from training data
but differ in the fact that they rely on strong assumptions re-
garding local smoothness. In our previous work [2], which
we build on here, we used a supervised learning approach to
estimate confidence for both interest point descriptors and
optical flow. Our method seeks to learn where each flow
algorithm will succeed or fail based on analyzing a feature
vector computed from the image pair. We combine multiple
feature types such as temporal, texture, distance from image
edges, and others, to estimate the confidence in a given flow
algorithm’s success. This confidence was also employed
in a state of the art occlusion detector [19]. Gehrig and
Scharwächter describe a real time system which combines
several different cues (with one variational flow specific
feature) to estimate confidence by classifying pixels into
discrete error classes based on estimated flow error [20].

Attempts have been made to evaluate the performance
of different confidence measures. Bainbridge-Smith and
Lane [21] compare several spatial derivative based con-
fidence measures on a limited set of data. Kybic and
Nieuwenhuis [4] provide a thorough comparison of their
work against others but only for one optical flow algorithm.

Other areas have witnessed attempts to learn a confidence
measure. For depth images captured using a Time Of Flight
camera, Reynolds et al. [22] proposed a supervised learning
method in the spirit of this work, which classifies the
depth error returned by the camera. Using a learning based
approach, Li et al. [23] sought to learn a ranking function
which sorts interest points according to their stability.

Algorithm Selection
In addition to estimating confidence for a particular flow
algorithm, our supervised learning approach also allows us
to combine the output of several different flow algorithms to
choose the best flow at each pixel. Here, we review related
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work in combining different “experts” with specific empha-
sis on methods for combining optical flow algorithms.

Raykar et al. [24] proposed a model to deal with the
scenario in supervised learning where multiple annotators
(or experts) exist, but each of them is slightly wrong. In
their scenario, one expert is assumed to always be better
than all the rest, and the task consists of finding that
expert. The technique is an improvement over following
the majority vote when some experts are better than others.
Our problem formulation is different, however, because
we cannot assume that one expert is consistently better or
worse, independent of the image data being considered.

Learned algorithm selection is shown by Yong et al. [25]
for the specific task of image segmentation. They used an
SVM for learning and performed their experiments on 1000
synthetic images of 2D squares, circles, etc., with additive
noise, demonstrating what is actually online learning for
algorithm selection. Working with 14 constituent real-time
tracking algorithms, Stenger et al. [26] developed a frame-
work that learned the expected error of each algorithm,
given its confidence values. Then during testing, the best-
performing pairs of algorithms could be cascaded or run
in parallel to track a hand or head. This approach is very
flexible for situations where one task is being accomplished
at a time. Alt et al. [27] describe a supervised learning
approach for assessing which planar patches will be difficult
for tracking. Using this pre-selection of reliable templates,
they report an improved detection rate for an existing
tracking-by-detection system. Peng and Veksler attempt to
automatically estimate the best parameters for interactive
segmentation [28]. They train a classifier on image features
computed from training data and during testing attempt to
choose the best set of parameters (where a parameter set
could be viewed as an algorithm) to segment the given
scene.

Muja and Lowe [29] have presented a unique approach
to algorithm-selection that is quite valuable in the con-
text of feature matching and beyond. Like us, they argue
that algorithm-suitability is data-dependent. Their system
searches a parameter space, where the algorithm itself is
just one of the parameters, to find an appropriate approx-
imate nearest-neighbor strategy (algorithm and settings).
The automatically determined strategy is based on the target
data itself, such as a database of SIFT descriptors [30], and
desired preferences for optimizing lookup speeds versus
memory. There, the training data is the same as the test
data, so their optimization is deterministic, while our algo-
rithm suitability must be learned so we can predict which
segments are suited for which strategy, just by looking at
each video.

Of the existing approaches to computing optical flow, the
iterative FusionFlow [31] is still very different technically,
but the closest to our approach in terms of its philosophy.
They compute a discrete optimization on continuous-valued
flow-fields (with another continuous optimization “clean-
up”), by performing a minimal cut on an extended graph.
The extended graph consists of auxiliary binary-valued
labels to represent either accepting a newly proposed flow

vector at that location, or keeping the current flow estimate.
The similarity to our work is that in each such iteration of
FusionFlow, the new proposed solution could be viewed
as a competing strategy or algorithm, offering a potentially
lower energy than the current estimate, at least in some spa-
tial neighborhood. FusionFlow is quite flexible and could
potentially be modernized with more competitive starting-
proposals than the 200+ based on Lucas-Kanade [32] and
Horn and Schunk [33], but the authors indicate that because
of their energy function, the computed minimum eventually
gives a score extremely close to the energy of the ground
truth solution.

A thorough understanding of existing energy functions
allowed Bruhn et al. [34] to formulate a new Combined
Local-Global (CLG) method, aptly named “Lucas/Kanade
Meets Horn/Schunk”. Their new 2D energy term (and its
3D variant) combined the local robustness to noise offered
by algorithms such as Lucas-Kanade [32], with the regular-
ized smoothness and dense flow of global algorithms, such
as Horn and Schunk [33]. They compute a confidence crite-
rion based on this new energy term, and demonstrate that it
is partly correlated with actual accuracy. The challenge they
describe has been one of our driving motivations, namely,
that one has few if any reliable confidence measures,
beyond the chosen energy function itself. That problem
is compounded when comparing multiple algorithms with
different energy-minimization objectives.

The nonparametric FRAME model of Zhu et al. [35]
optimized its texture synthesis by picking out filters from
a filter bank, whose responses are correlated with neigh-
borhoods in the training image. That approach is very
flexible, adaptively using potentially many filters, including
non-linear ones which filter large sub-images. Since then,
Roth and Black’s Fields of Experts (FoE) [36] has gained
a following by augmenting FRAME, extending Markov
random fields with the capability to learn filters that model
local field potentials. The completely data-driven nature of
FoE is very attractive, and Woodford et al. [37] showed
a method that trains with 5x5 cliques in a comparatively
short time. Roth and Black have further demonstrated FoE
for the purpose of modeling an optical flow prior [38].
In [38], they used range-images of known scenes with
separately obtained real camera motions to learn a model
of motion fields, which are different from optical flow.
Here, they still had to manually monitor convergence of the
learning, but in testing, demonstrated superior results using
these spatial statistics as priors for the aforementioned 2D
Bruhn et al. [34] flow algorithm. FoE’s expert functions
are less flexible than the FRAME model by design: they
can be non-linear, but need to be continuous, and the log
of an expert has to be differentiable with respect to both
the expert’s parameters and the (necessarily) linear filter
responses.

Sun et al. [39] adapted their spatial FoE model of
optical flow, learning a relationship between image and flow
boundaries, this time with a parameterization of spatiotem-
poral brightness inconstancy. The steered model of flow and
the generalized data term are learned on the painstakingly
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prepared ground truth flow data of Baker et al. [1]. In
our experiments, we too train on similar data and also
have no need for sequence-specific parameter tuning, and
we achieve better scores simply by virtue of leveraging
multiple black-box algorithms that are effective in their own
right.

An important result of the FoE line of research is the
finding, that with careful optimization procedures, a good
generalist algorithm’s priors about local responses to linear
filters should be learned from representative training data.
Different low-dimensional “experts” in this setting are not
unique algorithms, but are instead measures, being com-
bined to model high dimensional probability distributions
of parameterized statistics. Our goal is much simpler, non-
parametric, and complementary: to establish the discrim-
inability between visual situations given competing strate-
gies or algorithms, in this case, for computing optical flow.
For example, the algorithms with FoE-based priors trained
with different sized cliques (5x5 for [38], 9x9 for [39])
could be evaluated as different strategies in our framework.

3 LEARNING ALGORITHM

Given a dense optical flow field F , computed from an
image pair I1 and I2, we wish to estimate a confidence
value ψi ∈ [0, 1] for each flow vector fi = (ui, vi). One
option would be to pose this as a regression task and
attempt to estimate the true error value ε∗epe for each flow
vector. Where ε∗epe is the End Point Error (EPE), i.e. the
distance measured in pixels between the computed flow
vector and the ground truth. Instead, we attempt to solve
the comparatively easier problem of determining if the
proposed flow vector fi is reliable or not at a specific error
threshold εsepe. Unlike other methods, this has the advantage
of allowing the user to specify a lower limit on accuracy.
For example in some applications, it is beneficial to have
more pixels, even with coarser flow estimates, e.g., [40]. We
pose confidence estimation as a standard binary supervised
learning problem of the form:

D = {(xi, ci)|xi ∈ Rd, ci ∈ {0, 1}}ni=1, (1)

with n being the number of training examples, d the
dimensionality of the feature vector xi computed from the
images and flow field, and ci the label. In training, a flow
vector fi gets a label of 1 if its EPE, εiepe, is less than the
desired threshold εsepe, otherwise it is set to 0:

ci =

{
1 εiepe 6 ε

s
epe

0 εiepe > εsepe.
(2)

At test time, the probability associated with the class label
ci is taken to be our confidence ψi.

The applicability of most flow algorithms is situation-
specific, and we wish to classify those situations auto-
matically. Using a similar approach, we seek to learn the
mapping between a feature vector and a class label which
represents the different possible algorithms. In this scenario,

algorithm selection is posed as a multi class supervised
learning problem:

D = {(xi, ci)|xi ∈ Rd, ci ∈ ZK}ni=1, (3)

with the same notation as Eqn. (1), but now ci is the
algorithm with the lowest EPE, and K is the number of
possible competing algorithms.

Our single classifier is taking the place of the multiple
algorithm-specific energy terms or confidence measures.
Being probabilistic, the posteriors of different classifiers
can be compared to each other. Task accuracy should be
improved if each part of an image sequence is handled by
the most suitable of K algorithms. The proposed approach
is most appropriate in situations where either no good single
algorithm exists, or where a generalist algorithm makes
mistakes in places that some specialist algorithm does not.

3.1 Choice of Algorithm
For our classifier, we have selected the Random Forests
algorithm developed by Breiman [41]. Random Forests is
an ensemble of decision trees which averages the pre-
dictions of the trees to assign the class labels. It makes
use of bagging to uniformly sample (with replacement)
subsets from the dataset to train the decision trees. It can
also use the remaining data to estimate the error for that
particular tree. During training, each node selects from a
random set of tests the one that best splits that data. A
Random Forest has the advantage of being fast to train
and test even on large amounts of data, it is multiclass,
robust to noise, inherently parallelizable, can handle large
datasets, and it also estimates the importance of the input
variables. See [42] for a detailed overview of classification
and regression forests. We also experimented with Boosted
Trees and SVMs and noted slightly worse performance with
an increase in training time.

4 FEATURES
Given an image pair I1 and I2 (where I = f(x, y)
is a grayscale image), we wish to construct a feature
representation for each pixel in the first image, xi, which
is indicative of the success and failure cases of optical flow
algorithms. We use a similar feature representation to [2],
with the addition of some new features from [19]. This
feature set, while certainly not exhaustive, combines single
image, temporal, and scale space features.

Appearance
Highly textured regions provide little challenge for modern
optical flow algorithms. By taking the gradient magnitude
of the image, it is possible to measure the level of “tex-
turedness” of a region:

g(x, y, z) = ||∇I1(x, y, z)||, (4)

where x and y are the pixel location in I1, and z is the level
in the image pyramid. Additionally, the distance transform
is calculated on Canny edge detected images:

d(x, y, z) = disTrans(||∇I1(x, y, z)|| > τed). (5)
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The intuition is that image edges may co-occur with motion
boundaries, and the higher the distance from them, the
lower the chance of occlusion. We also use the learned
Pb edge detector of [43], which produces edge maps that
often correlate with object edges:

pb(x, y, z) = disTrans(Pb[I1(x, y, z)] > τpb). (6)

Other texture based features, such as convolution with
filter banks, were tested to capture other neighborhood
information, but did not show increased performance.

Temporal
Flow algorithms tend to break down at motion discontinu-
ities. Identifying these regions can be a cue for improving
flow accuracy. Techniques such as image differencing can
potentially locate these regions, but we found that a more
robust approach is to take the derivative of the proposed
flow fields. This is done by computing the median of the
different candidate algorithms’ flow and then calculating the
gradient magnitude in the x and y directions respectively:

tx(x, y, z) = ||∇u̇||, ty(x, y, z) = ||∇v̇||. (7)

Photo Constancy
Another indicator of optical flow quality is to measure the
photoconstancy residual. For a given pixel, this is achieved
by subtracting the intensity in I2 at x, y advected with the
predicted flow u, v from the intensity in I1 at x, y. Due to
the discrete nature of image space, we bicubicly interpolate
the intensity values in the second image. The residual error,
measured in intensity, is calculated independently for each
of the K candidate flow algorithms, so

r(x, y, k) = |I1(x, y)− bicubic(I2(x+ uk, y + vk))|. (8)

In the scenario where the optical flow vector projects the
pixel outside the bounds of I2, we assign a constant penalty.

Scale
Most effective approaches to optical flow estimation utilize
scale space to compute flow for big motions. With this
in mind, all of these features, with the exception of the
residual error, are calculated on an image pyramid with
Z = {1, . . . , l} levels, and a rescaling factor of s.

These individual features are combined to create the full
feature vector xi, computed for each of the pixels in I1 as

xi = {g(x, y, Z), d(x, y, Z), tx(x, y, Z), ty(x, y, Z),
pb(x, y, Z), r(x, y, {1, . . . , k})}. (9)

5 TRAINING DATA
Several techniques have been proposed to generate ground
truth optical flow data from real image sequences. The
popular Middlebury optical flow dataset approximated flow
by painting a scene with hidden fluorescent texture and
imaging it under UV illumination [1]. The ground truth
flow is then computed by tracking small windows in the
high resolution UV images, and performing a brute-force
search in the next frame. The high resolution flow field is
then downsampled to produce the final ground truth. This

technique, while successful, is extremely time consuming
and limited in the types of scenes that can be captured (re-
stricted to lab environments). Additionally the ambiguity in
matching the image patches can result in incorrect flow and
inaccurate labelling of occlusion regions. Human assistance
has been used to explicitly annotate motion boundaries in
scenes [44]. However these approaches remain inaccurate
and not scalable for producing large amounts of reliable
ground truth data.

Synthetically generated data offers an attractive method
for automatically creating large amounts of accurate train-
ing data. This type of approach has been shown to be
successful in applications such as human body pose estima-
tion [45] and depth super-resolution [46]. Synthetically gen-
erated sequences have been used as an alternative to natural
images for optical flow evaluation since the introduction of
the famous Yosemite sequence by Barron et al. [8]. Until
now, the limiting factor in their use has been the inability to
easily generate realistic sequences. As a result, practitioners
have focussed on “toy” datasets with unrealistic geometry
and lighting [47], [48]. Using realistic texture, global illu-
mination techniques, and by modeling complex geometry,
it is now possible to generate realistic sequences with
consumer 3D computer graphics packages [49]. Attempts
have been made to assess whether synthetic data produces
the same error distribution as real data [50].

In our previous work, we presented a system which
allowed the user to generate ground truth optical flow for
a given synthetic image pair of a static scene [2]. Our
expanded system allows us to generate ground truth flow
for arbitrary scenes with rigid moving objects and camera
motion. Examples of our training data are shown in Fig. 2.
The system works by casting a ray from the camera center
in the first image, through the image plane and into the
scene until it intersects an object. Then this point is pro-
jected back into the second camera (respecting occlusions
in the scene and both camera and object motion), and the
optical flow is calculated from the position difference with
respect to the first image plane. An advantage of the system
is that the texture and lighting of the scene is independent of
the geometry. This creates the possibility for re-rendering
the same scene using different illumination and textures,
without altering the ground truth. As the system calculates
intersections between projected rays and scene objects,
occlusions are noted and therefore not erroneously labelled
with incorrect flow (black regions in Fig. 2). To generate

Fig. 2: Ground Truth Optical Flow Data The top row depicts
some example images from our system. Below is the ground truth
flow between successive frames. The flow field color is coded
using the same format as [1]. Black values in the flow image
indicate areas of occlusion between the two frames.
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large amounts of data, we simulate rigid body dynamics
on the scene objects with gravitational and force fields. We
then randomly texture the objects from a library of high
resolution texture maps.

For our training set we generated 20 image pairs. These
scenes exhibit three different motion categories, small,
medium and large (determined by the median flow vectors).
Seven of the scenes feature moving objects, and 14 have a
moving camera. Camera motions include panning left and
right, and rotation about the focal object. While certainly
not an exhaustive set, these scenes are an attempt to cover
a subspace of plausible scene motions. All training scenes,
with descriptions of scene motion and texture content, with
the code to create additional ground truth data, are available
on our project website.

5.1 Training Data Selection
Due to the potentially unlimited training data available, it
is necessary to perform some selection on the examples
used. In the algorithm selection case, training data can
be quite redundant, as different algorithms can give the
correct (or very close to correct) flow for a given pixel.
Also, large portions of scenes can have very similar regions
of flow (e.g., planar surfaces), offering little additional
information. To overcome these problems we pre-select a
subset of the available data on which to train. We only
train on examples where the end point error between
the best performing algorithm and the second best for a
particular pixel is greater than a threshold. We set this
threshold to a value of 0.3 pixels (based on the median
difference between the best and worst algorithms for the
whole dataset) which maximises the number of training
points where the constituent algorithms differ most. We also
ensure that we have an equal amount of training data for
each of the algorithms. For an experimental analysis of the
effects of varying the amount of training data, see Section
7.2.1. In the case of confidence estimation we select subsets
at random from the training data (equally sampling from
each scene). Samples which fall below εsepe are labelled as
class 1 (acceptable error) and samples above are set to class
0 (too large an error). This reduces the amount of training
data but also allows the selection of examples which are
most discriminative.

6 COMPETING METHODS

We also compare our confidence measure against several
competing methods. Like our results, each of these confi-
dence measures is computed per pixel i. While additional
confidence measures exist (e.g., [4]) we only consider those
that are generally applicable to any type of flow algorithm.

The first and most basic measure attempts to characterize
pixels of low texture, because optical flow algorithms
without any form of spatial regularization typically break
down in these regions [16]. Here, confidence is related to
the gradient magnitude of intensity in the first image,

ψi
grad = ||∇I1||. (10)

The next set of confidence measures is based on proper-
ties of the 3D structure tensor [12]. The structure tensor J
is a 3D symmetric matrix of partial derivatives, computed
from the spatiotemporal image sequence. Unlike the previ-
ous measure, these confidence measures use both images
in the sequence to construct the structure tensor, though
they still do not use any information specific to the flow
computed. The structure tensor is computed for each pixel
and has the form

Ji =

Ĩixx Ĩixy Ĩixt
Ĩixy Ĩiyy Ĩiyt
Ĩixt Ĩiyt Ĩitt

 , (11)

where Ĩipq is the smoothed1 product of the partial derivatives
in the p and q direction at pixel i. The derivatives are
approximated using finite differences in the x, y and t
(I1 → I2) dimensions. An eigenvalue decomposition is
then performed on this matrix, and the resulting eigen-
values (λ1, λ2, λ3) are used to compute the confidence.
The eigenvalues are sorted into descending order, where
λ1 > λ2 > λ3 > 0.

The first structure tensor based measure is the total
coherency measure. It seeks to estimate the overall certainty
of displacement,

ψi
strTc =

(
λ1 − λ3
λ1 + λ3

)2

. (12)

The spatial coherency measure seeks to detect the aperture
problem, so

ψi
strCs =

(
λ1 − λ2
λ1 + λ2

)2

. (13)

The corner measure is computed as the difference between
the previous two, so

ψi
strCc =

(
λ1 − λ3
λ1 + λ3

)2

−
(
λ1 − λ2
λ1 + λ2

)2

. (14)

The size of the smallest eigenvalue, λ3, is correlated with
homogeneous regions [4],

ψi
strEv3 = λ3. (15)

The previous structure tensor based measures are ag-
nostic to the computed flow fields. Kondermann et al. [5]
describe a statistical-test based method that is trained on
local examples of ground truth optical flow. Unlike the pre-
vious methods, it looks at the computed flow and estimates
its plausibility given their learned model. Local flow from
N ×N patches is modeled as a multivariate Gaussian; the
parameters of this model are partitioned into center flow and
the rest. During testing, the center flow vector is evaluated
against the rest of the flow in the window, and its correlation
based on the trained model is used to determine confidence

ψi
pV al = inf{α ∈ [0, 1]|dM (fi) > G−1(1− α)}, (16)

where dM (fi) is the Mahalanobis distance between the
central flow vector fi and its surrounding region given the

1. In our experiments, smoothing is performed by convolving the
derivatives with a 7× 7 Gaussian kernel with standard deviation 2.
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learned mean and covariance from the training data. G−1

is the inverse of the cumulative distribution function of the
distances dM () obtained from the training data. Our results
are provided using our own implementation of their work
where we train the model on 5000 patches from several
sequences (32 in all) with a patch size of 11. As suggested
in their paper, we rotate each patch four times by 90 degrees
to get a zero mean estimate of the flow.

For each of the competing confidence measurements we
normalize their outputs between 0 and 1.

7 EXPERIMENTS

The online Middlebury Optical Flow Evaluation [1] cur-
rently ranks over 60 algorithms. We chose the four algo-
rithms which ranked highly on test data and with imple-
mentations available at the time of writing: [51], [52], [3]
and [53]. For brevity, we will refer to them as TV, FL, CN,
and LD, respectively. The algorithms were used with their
default or most-successful published settings, though in
practice, the same algorithm with different parameters could
be evaluated by our classifier. For quantitative evaluation,
we use the average End Point Error (aEPE) metric [54],

aEPE =
1

N

∑
i

√
(ui − uGT

i )2 + (vi − vGT
i )2, (17)

which equates to the average of all the distances in pixels
between each flow vector and the ground truth. Early
experimentation with the average angular error [8] produced
similar results.

We do leave-one-out evaluation with ground truth flow
from three sources: the eight Middlebury training se-
quences [1], two Middlebury-like sequences from [39], and
22 of our own synthetic sequences (denoted with an *, as
described in Section 5 with two additions), for a total of 32.
In line with the evaluation of [1], the reported scores are
the aEPE across the whole image. Error is not reported for
areas known to have no flow, and for a 10 pixel boundary
region around the border of the image. During leave-one-
out tests, we also omit any training scenes if they resemble
the test scene. Although we evaluate ourselves on data from
other sources, we only train on 20 synthetic ground truth
scenes produced by our system.

We have two sections of experiments. In the first sec-
tion we evaluate our confidence measure for each of the
individual flow algorithms, and compare against other al-
ternative methods. In the second section we estimate the
best combination of optical flow algorithms.

7.1 Optical Flow Confidence
We evaluate our algorithm for several different values of
error threshold, εsepe = {0.1, 0.25, 0.5, 2, 10}, across 32
test sequences. A subset of these results is presented in
Fig. 3. We refer the reader to supplementary material for
further images. The image displays the confidence results
for four different optical flow algorithms for three different
sequences: two Middlebury (one real and one synthetic) and
one of our own scenes. Each plot displays the aEPE (Y axis)

as a result of removing pixels in order of confidence. So at
90% we reject the 10% we are least confident about and
compute the aEPE on the remaining data. The Kway curve
shows the confidence as a result of the algorithm selection
experiments in Section 7.2, where for each pixel we report
the confidence of the winning flow algorithm, as determined
by our classifier with εsepe = 2.0. For comparison we also
display the optimal ordering which serves as a lower bound
on the best achievable error. We can see from the figure
that the confidence measures for different values of εsepe all
produce the same downward trend, with the exception of
the TV and RubberWhale pairing for εsepe = 10. This can
be explained by the fact that the largest magnitude flow
vector for this sequence is on the order of 2−3 pixels, i.e.,
is much lower than the trained value of 10 (the aEPE for
the different algorithms are presented in Table 2). Similarly,
εsepe = 10 performs best for street1txtr1 due to the large
motion in that scene.

7.1.1 Comparison to Other Methods

We also compare our results to the other general purpose
confidence measures outlined in Section 6. Results for three
sequences are presented in Fig. 4 using the same sparsi-
fication technique from Fig. 3. Our confidence measure
is illustrated at a value of εsepe = 0.25. As can be seen
for all three sequences A) - C) our confidence measure
gives the most consistent performance, always reducing the
aEPE as more pixels are removed. We consistently produce
better scores when compared to the other measures with
the exception of LD RuberWhale. One explanation for that
result is that εsepe = 0.25 is not a sensitive enough error
threshold for the small errors (< 0.1 pixels) produced by the
different algorithms on this sequence. A more appropriate
value of εsepe would be 0.1 or less, and as we can see from
Fig. 3 A) LD this produces a better sparsification curve.
It is worth noting that the ψpV al measure of [5] produces
incorrect results for C) street1Txtr1* even though it has
observed flow patches from this scene in training.

In addition to the qualitative comparison from Fig. 4 we
also perform a quantitative comparison to the competing
methods. Table 1 contains the aEPE scores for each of
the different confidence measures averaged across the 32
test sequences from Table 2 for each flow algorithm. To
quantify the success in removing the bad flow vectors,
we remove pixels based on the confidence and compute
the aEPE for the remaining pixels, averaging across all
the sequences. For each confidence measure we evaluate
the aEPE at Pamt = {30, 60, 90} pixels, where Pamt is
the percentage of remaining pixels. As can be observed
in Fig. 4, there are instances where there are no pixels
remaining at a particular value of Pamt. This is because
in certain situations, multiple pixels can have the exact
same confidence value. If there is no pixels within 10%
of the desired value of Pamt we simply ignore that aEPE
when computing the total average. Our confidence measure
produces the best overall results of all the competing
methods.
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Fig. 3: Confidence Graphs Each row represents a different algorithm while each column is one of three different scenes. Our confidence
measure is illustrated at different values of the error threshold, εsepe = {0.1, 0.25, 0.5, 2, 10}. Kway represents the confidence for the
combined flow using εsepe = 2.0. Each scene/algorithm pair displays the aEPE as a result of keeping x% of flow vectors in order of
diminishing confidence. Note that the Y axis for each scene/algorithm pair has a different scaling.
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Fig. 4: Confidence Comparison We compare our confidence measure against six others. This image presents three different scenes
and four different optical flow algorithms. We follow the same sparsification technique as Fig. 3. Our measure, ‘ours0.25’, consistently
ranks the flow vectors by accuracy better than any other method.
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method TV FL CN LD
strEv3 1.525 1.548 1.347 1.070
strCt 1.824 1.978 1.813 1.184
strCs 1.708 1.739 1.579 1.229
strCc 1.400 1.323 1.283 0.912
grad 1.371 1.622 1.423 0.887
pVal 1.137 0.780 0.829 0.831
ours εepe1.0 0.605 0.504 0.568 0.416
ours εepe0.25 0.512 0.381 0.600 0.453

TABLE 1: Confidence Measure Comparison Each of the
competing confidence measures is evaluated on the different flow
algorithms across the 32 test sequences. Each score represents
the total average computed by removing different number of
pixels and only counting the score for the remaining Pamt =
{30, 60, 90}, with lower scores being better.

7.1.2 Confidence in X and Y directions
For view interpolation or panoramic stitching in the pres-
ence of moving objects, one component of the flow vector
could be quite accurate while the other is highly uncertain.
In these applications, it could be useful to distinguish
this situation from one where both X and Y flow is
unconfident. In addition to computing a joint confidence,
we can also produce a confidence for the horizontal and
vertical directions separately. We simply train the same
classifier on either the X or Y flow components. Fig. 5
shows the separated confidence images for two scenes, one
featuring horizontal motion and the other vertical. In the
first sequence, we can see that our confidence measure is
more confident for flow vectors in the Y direction (as there
is very little to no vertical motion) but more uncertain in
the X direction. The second scene depicts several objects
falling to the ground. Our Y confidence correctly identifies
more uncertainty in the vertical direction.

7.2 Choosing the Best Optical Flow Algorithm
In our next set of experiments we predict which one
of K constituent optical flow algorithms (in this case
K = 4; TV, FL, CN, LD) to trust at each pixel. We
perform leave-one-out tests on all 32 sequences. The results
are summarized in Table 2. It is interesting to note that
of the four algorithms, none outperforms the others on
all sequences. While CN gives the best results on more
sequences, LD has a lower aEPE overall. ‘OptCombo’
is the optimal combination given the ground truth, and
serves as a lower limit on the best possible performance
achievable. “OursKWay” is the multiclass formulation from
Eqn. (3). ‘OursCombo’ combines the output of the K
individual confidence measures for each flow algorithm.
At each pixel, we choose the algorithm that is the most
confident. The results here are presented for εsepe = 2.0.
From Fig. 3 we can see that almost any other value of
εsepe would perform very well also. Interestingly, it does
not win any of the individual sequences, but it consistently
comes a close second and achieves the best score overall.
‘OursScene’ chooses the result of the algorithm which has
the majority vote from the classifier. ‘RandCombo’ is a
baseline algorithm that simply chooses randomly one of the
K algorithms at each location; as expected it performs the

worst overall. It is worth noting that the best result could
bear improving to further close in on the ideal possible
combination.

In sequence 24 (Crates2Hrtxtr1*) the different flow algo-
rithms produce widely varying aEPE scores (see Table 2).
In Fig. 6 we can see the results of our algorithm selection
for ‘OursKWay’. Our classifier avoids regions of large
error, which is most noticeable on the blue crate in the
foreground. Instead of choosing the flow estimated by CN
(which generally gives very good performance) it chooses
flow from LD and FL. Here, the color coding can be slightly
misleading as it simply shows the flow algorithm with the
highest probability and does not indicate how close the
different algorithms actually are. Both our methods for
predicting the best combination produce results close to
the winning result for this particular scene.

7.2.1 Effects of Training Data
Fig. 7 illustrates the effect of varying the amount of
training data used from each sequence while doing leave-
one-out tests on two sequences. To minimize the effects of
randomness we ran each of these leave-one-out experiments
three times and averaged their results. For both scenes,
we can see that the aEPE slightly improves as more data
is included in training. This is explained by the fact that
for most sequences it is very difficult to reduce the aEPE.
Typically, regions such as object boundaries contain most
of the error. A more revealing metric is to look at the
aEPE of the flow vectors with the worst accuracy (in this
example we look at the worst 5% of vectors - aveEpeTp5).
Sequence 4 (RubberWhale) has only a slight improvement.
This is because each of the constituent flow algorithms has
a similar aEPE, see Table 2. Whereas, 88 (blow19Txtr2*)
benefits from more training data.
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Fig. 7: The effect on average EPE for ‘OursKWay’ on two
different sequences as we change the number of training samples
per class per sequence. aveEpe is the average EPE and aveEpeTp5
is the average EPE for the worst 5% of the data. Error bars show
the standard deviation.

Fig. 8 illustrates the feature importance as given by the
Random Forest classifier for sequence 24 (Crates2Htxtr1*)
for the ‘OursKWay’ leave-one-out experiment from Table
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C) X ConfidenceB) Joint Confidence D) Y ConfidenceA) Input

Fig. 5: Horizontal and Vertical Confidence. A) Input image and computed flow. B) Estimated confidence. C) Estimated confidence
in X direction. D) Estimated confidence in Y direction. Each row represents a different scene with confidence computed for CN [3].
The first scene features predominantly horizontal motion and is from the Middlebury Stereo dataset with εsepe = 0.3. It can be seen
that the Y confidence image is more certain than the joint confidence. The second scene, 89 drop1Txtr1*, features vertical motion
with εsepe = 0.1. There is more uncertainty around the falling objects in the Y confidence as compared to X .

2. We see the boundary features are the most important
followed by the temporal gradients.
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Fig. 8: Feature importance as given by the random forest classifier
for sequence 24 (Crates2Htxtr1*) for the ‘OursKWay’ leave-one-
out experiment from Table 2.

7.3 Implementation details

For all experiments, the Random Forest classifier was run
with 50 trees, 50 minimum samples at each node and a
maximum tree depth of 10. We use all our scenes from
Table 2 marked with an * for training, with the exception
of 13 and 14 which are omitted due to their low resolution.
In total we have 20, 640 × 480, training sequences with
14, 000 samples randomly chosen from each and with an
even amount for each class in the suitability experiments.
For the feature vector, the hysteresis threshold τed is set to
the value returned by MATLAB, and for τpb we use 0.1
and 0.4. For the photoconstancy residual we set a value
of 1000 if the flow vector points out of the frame. For
the features that exploit scale we use an image pyramid

with z = [1, 10] levels and a rescaling factor of s = 0.8.
Due to their computational expense, the Pb features were
computed for 4 levels. Combining all the features results
in a 52 dimensional feature vector.

Our unoptimized code for the classifier is implemented
in C and features are computed in MATLAB. All the
following times are presented in seconds for a typical
640 × 480 image pair on an Intel i7 2.67GHz with 6GB
RAM. Computation for each of the flow algorithms takes
in seconds: LD 35.5, FL 22.4, CN: 1330.8 and LD 258.2.
The Random Forest takes 439.8 seconds to train on 20
sequences and testing takes 30 seconds. Our features are
all quite light weight and take 6.5 seconds to compute not
including the Pb features which take a total of 2165 seconds
for 4 scales. These features could be sped up using a more
efficient C implementation. The current major bottleneck
is the need to compute the different optical flow vectors.
With more GPU implementations for flow (e.g., [52]) these
times will hopefully reduce.

8 CONCLUSIONS
There is an ever-increasing variety of solutions to the prob-
lem of optical flow estimation. These different algorithms
and their energy functions can be seen as good or bad,
but only with respect to specific video situations. Our
main finding is that the success (or failure) of all the flow
algorithms we tested for aEPE is predictable, given our
supervised learning framework.

Each algorithm processes sequences differently. Frames
encoded with our feature vector (Eqn. (9)) correlate well
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Fig. 6: Selecting the best algorithm A) First image of input pair. B) Selected algorithm result for ‘OursKWay’ classification where
each color represents a different algorithm. C)-F) EPE images for TV, CN, FL and LD. Note how in different image regions, our
classifier avoids choosing flow algorithms which produce larger errors.

Image Sequence TV FL CN LD OursKWay OursCombo RandCombo OptCombo

1 Venus 0.408 0.342 0.229 0.433 0.304 0.306 0.351 0.176
2 Urban3 1.132 0.524 0.377 0.600 0.502 0.543 0.658 0.200
3 Urban2 0.506 0.444 0.207 0.334 0.353 0.331 0.368 0.123
4 RubberWhale 0.135 0.096 0.077 0.120 0.092 0.108 0.107 0.052
5 Hydrangea 0.196 0.164 0.154 0.178 0.169 0.168 0.174 0.100
6 Grove3 0.745 0.624 0.438 0.657 0.605 0.585 0.616 0.324
7 Grove2 0.220 0.169 0.091 0.159 0.149 0.161 0.159 0.064
8 Dimetrodon 0.211 0.144 0.115 0.117 0.139 0.152 0.147 0.077
9 Crates1* 3.464 3.730 3.150 3.104 3.234 3.113 3.365 2.423
10 Crates2* 4.615 12.572 10.409 2.513 2.617 3.692 7.568 1.544
13 Mayan1* 2.331 0.727 1.718 5.567 3.887 2.590 2.626 0.297
14 Mayan2* 0.442 0.344 0.211 0.350 0.304 0.247 0.339 0.138
15 YosemiteSun 0.310 0.250 0.232 0.188 0.251 0.253 0.245 0.142
16 GroveSun 0.576 0.403 0.233 0.484 0.301 0.335 0.424 0.170
17 Robot* 2.335 1.857 1.525 1.212 1.005 1.133 1.734 0.415
18 Sponza1* 1.006 1.013 1.102 0.917 1.009 0.997 1.010 0.635
19 Sponza2* 0.531 0.494 1.674 0.481 1.538 1.485 0.791 0.307
22 Crates1Htxtr2* 1.106 0.693 1.640 0.548 0.931 0.679 0.999 0.210
24 Crates2Htxtr1* 3.128 10.210 8.805 0.809 1.222 2.080 5.762 0.382
26 Brickbox1t1* 1.094 0.394 0.228 2.602 0.373 0.457 1.070 0.148
29 Brickbox2t2* 7.478 1.827 2.192 3.505 1.690 1.802 3.765 0.716
30 GrassSky0* 2.102 2.484 1.317 1.039 1.750 1.209 1.746 0.434
39 GrassSky9* 0.722 0.438 0.273 0.510 0.378 0.358 0.486 0.189
49 TxtRMovement* 3.166 0.241 0.132 0.356 0.337 0.331 0.969 0.063
50 TxtLMovement* 1.521 0.282 0.126 0.604 0.225 0.318 0.652 0.057
51 blow1Txtr1* 0.085 0.050 0.027 0.081 0.048 0.052 0.061 0.017
88 blow19Txtr2* 0.525 0.380 0.199 0.319 0.301 0.311 0.355 0.145
89 drop1Txtr1* 0.119 0.071 0.052 0.084 0.063 0.070 0.082 0.026
106 drop9Txtr2* 5.195 1.985 2.715 4.369 3.301 3.095 3.574 1.362
107 roll1Txtr1* 0.004 0.005 0.002 0.002 0.003 0.004 0.003 0.001
124 roll9Txtr2* 0.040 0.048 0.014 0.023 0.022 0.027 0.031 0.011
125 street1Txtr1* 3.647 3.585 4.097 2.664 3.329 2.923 3.494 1.446

0 1 2

TV

FL

CN

RandCombo

LD

OursKWay

OursCombo

OptCombo

aEPE

0.387

0.935

1.092

1.367

1.368

1.456

1.532

0.951

OursScene
1.350

TABLE 2: Leave-one-out average EPE scores for estimating the best optical flow algorithm at each pixel location for 32 different
scenes. TV, FL, CN and LD are the 4 constituent optical flow algorithms. ‘OursKWay’ is the result of our multiclass classification,
‘OursCombo’ is the combined best confidence, ‘RandCombo’ is a random combination, ‘OursScene’ is the algorithm with the most
votes for a scene and ‘OptCombo’ represents the optimal ground truth combination. The bar chart to the right displays total aEPE
across all 32 sequences.
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with the applicability of that process for each sequence. Our
feature vector embodies two important characteristics. First,
it is comprised of multiple different measures, incorporating
a broad range of motion and appearance cues and simple
algorithm-specific qualities like the photoconstancy resid-
ual. Second, mapping feature vectors to uncertainty labels
using a Random Forest means that the training process
performs feature selection. Instead of heuristic choices
about the expected smoothness of flow fields or anticipated
challenges of textureless regions, our method objectively
chooses weights, picking out which features are important
and in what combinations.

Per-algorithm flow confidence is worth measuring, and
can be applied to whole videos or just parts. The Opt-
Combo and OursCombo columns of Table 2 show that even
though modern algorithms agree on much of a scene’s flow,
significant disagreements are worth settling by carefully
modeling each algorithm’s uncertainty. Knowing where a
flow algorithm’s performance is predicted to be uncertain
creates opportunities for interesting applications. We have
shown (Fig. 3) that excluding pixels for which the flow-
confidence is low really reduces the overall aEPE. The
impact is different on different sequences, sometimes by an
order of magnitude, but consistently improves performance
for aEPE < 2 pixels. Now a user of an existing or future
flow algorithm can balance their need for spatial coverage
(i.e., number of pixels) against the accuracy they can accept.
Further, they can decide to keep or ignore flow which
is only confident in the X or Y direction, allowing for
higher level algorithms to degrade gracefully when full
2D flow is underconstrained. Finally, whether using our
multiclass or one-vs-all methods, users can now elect to
locally (see Fig. 6) trust each algorithm only where it is
most appropriate. We advocate this resulting algorithm-
suitability “patchwork” for users who want the lowest EPE
over videos in general, and who, for specific videos and
with little guesswork, prefer to consistently win “silver”
instead of an occasional “gold.”

8.1 Limitations & Future Work
The most exciting avenue for future work is the oppor-
tunity to develop specialist flow algorithms for narrowly
defined situations. If the situation can be detected using our
framework, then that specialist algorithm could be terrible
in general, as long as it excels in its narrow domain.
Opportunities obviously exist for further features that may
also correlate with flow confidence. Heterogeneous features
that incorporate context of motion could be quite revealing,
and more accurate occlusion information [19] could prove
useful.

One limitation of Random Forests and most supervised
learning algorithms is that a training example specifies
only that one algorithm is most-suitable, while the rest are
equally unsuitable. This effectively ignores the fact that the
second-best algorithm could give an end-point estimate 10
times closer than the fourth-best. Equally, when differences
between the top two algorithms are minimal, we must
currently either ignore the example completely, or expend

effort trying to learn to distinguish between equals. Our
one-vs-all tests were posed as classification challenges to
allow easy comparisons between experiments, but a system
similar to our prototype could be built around regressing
per-algorithm flow-confidence. Using regression instead of
classification would potentially allow us to automatically
choose the best value of error threshold εsepe instead of
relying on a user provided value. This could allow us to
learn the relationship between image features and optical
flow error directly.

We chose to validate our approach on the example
problem of optical flow. There are many other applications,
such as stereo, where multiple competing algorithms vie
to be universally best, and it would be interesting to try
our learned segmentation approach there. Also, a reliable
estimate of confidence for these problems would be of great
use to practitioners [55]. Finally, our approach ignores the
cost of processing times, which is currently acceptable, but
O(k) in the number of algorithms under consideration. One
strategy could be to optimize the classifier subject to the
computational cost of each algorithm.
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