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1 Introduction

z A pixel is not a square (or rectangular). It is simply a point sample. There are cases where the
contributions to a pixel can be modeled, in a low order way, by a little square, but not ever the
pixel itself. The sampling theorem tells us that we can reconstruct a continuous entity from such a
discrete entity using an appropriate reconstruction filter - for example a truncated Gaussian.

z Cameras approximated by pinhole cameras. When pinhole too big - many directions averaged
to blur the image. When pinhole too small - diffraction effects blur the image.

z A lens system is there in a camera to correct for the many optical aberrations - they are
basically aberrations when light from one point of an object does not converge into a single point
after passing through the lens system. Optical aberrations fall into 2 categories: monochromatic
(caused by the geometry of the lens and occur both when light is reflected and when it is refracted -
like pincushion etc.); and chromatic (Chromatic aberrations are caused by dispersion, the variation
of a lens’s refractive index with wavelength). Lenses are essentially help remove the shortfalls of a
pinhole camera i.e. how to admit more light and increase the resolution of the imaging system at
the same time. With a simple lens, much more light can be bought into sharp focus.

Different problems with lens systems:

1. Spherical aberration - A perfect lens focuses all incoming rays to a point on the optic
axis. A real lens with spherical surfaces suffers from spherical aberration: it focuses rays more
tightly if they enter it far from the optic axis than if they enter closer to the axis. It therefore
does not produce a perfect focal point and results in image blurring.

2. Vignetting - There are several causes of vignetting and one of them is optical vignetting
which is caused by the physical dimensions of a multiple element lens. Rear elements are
shaded by elements in front of them, which reduces the effective lens opening for off-axis
incident light. The result is a gradual decrease in light intensity towards the image periphery.

3. Scattering at the lens surface - Some light entering the lens system is reflected off each surface
it encounters.

4. Barrel and Pincushion distortion.

z Different kind of optical sensors include Charge coupled devices (CCD). It is simply an array
of photosites which can be thought of as buckets to hold electrical charge. The amount of charge
stored is proportional to the incident light intensity during exposure. The digitization is done using
ADCs line by line. Since the a photosite can get saturated, it can cause blooming in the final
image. Also a CCD can produce a thermally generated image (in darkness) - which is called the
dark current.
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z Different samplings:

1. Undersampling - is the process of having pixels sampling below the Nyquist rate (which
is twice the frequency of the original signal). Undersampling causes aliasing which makes
different signals become indistinguishable when sampled.

2. Oversampling - is the opposite of undersampling i.e. sampling higher than the Nyquist rate.
The downside of oversampling is the waste of storage resources. Still taking more samples
with the same number of photons per pixel improves Signal to Noise ratio (SNR).

z Signal to noise ratio in imaging is usually measured as:

SNR =
µ

σ
, σ =

√
E[(X − µ)2], µ = E[X]

Although the industry standard is to take 20 log10(µ/σ) for the SNR. If give multiple images of
the same scene, the same test can be used on a per-pixel basis. The quantity σ(i, j) would give
an estimate of the standard-deviation of the acquisition noise at that pixel. The average of σ(i, j)
would give an estimate of the average noise.

The auto-covariance of the image shows cross-talking of noise between adjacent pixel. It is com-
puted as the covariance of the signal against pixels in its neighborhood E[(Xij−µij)(Xi′j′−µi′j′)].

z The Nyquist Frequency, is half the sampling frequency of a discrete signal processing system
(not to be confused with Nyquist rate which is used for a continuous time signal). The sampling
theorem shows that aliasing can be avoided if the Nyquist frequency is greater than the maximum
component frequency of the signal being sampled.

Quantization converts a real valued function to integer / digital / discrete values. After quanti-
zation the original signal cannot be reconstructed, whereas in sampling, which is above the Nyquist
frequency, the signal can be reconstructed.

z A Bayer pattern is used to for arranging RGB color filters on a square grid of photosites. It
uses twice as many green elements as red or blue to mimic the physiology of the human eye. The
retina has more rod cells than cone cells and rod cells are most sensitive to green light.

z

1. Image resolution - is the number of pixels to represent an image.

2. Geometric resolution - is the number of pixels per area.
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3. Radiometric resolution - is the number bits per pixel.

z Usually the temporal resolution of the eye is 10Hz for rods and 60-100Hz for cones. Eyes also
have good quantization resolution - it can discern objects with a dynamic range of 90dB. Although
it cannot achieve such a dynamic range at the same time (which is equivalent to saying that humans
cannot hear a whisper in a loud environment - but cannot perceive both levels of sound in isolation).
At a particular moment an eye can usually perceive a contrast ratio over a range of 26dB to 40dB.

2 Segmentation

z Segmentation partitions an image I into N regions:

I =

N⋃
i=1

Ri, Ri ∩Rj = ∅, ∀i 6= j

z Types of segmentation:

1. Binary vs. Multi-region

2. Supervised vs. Unsupervised - supervised is where a human annotator can help along the way.

3. Exact vs. Over-segmentation - Over-segmentation aims to just divide image into segments,
where each segment belongs to a single surface in the real world - although that surface might
be broken into multiple segments.

4. Bottom-up vs. Top-down - Bottom-up works on visual coherency, whereas top-down works on
semantic coherency.

5. Pixel-based vs. Boundary-based - Boundary-based algorithms include snakes and other contour
approaches.

z Thresholding is a binary segmentation process where each pixel is marked as in or out of the
region of interest:

B(x, y) =

{
1 if I(x, y) ≥ T
0 if I(x, y) < T
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z Given ground-truth data, the Receiver Operator Characteristic (ROC) is a graph of true
positives/P against false positives/N. By setting different thresholds (or any other characteristic),
we can get different set of performance values. This allows us to build a whole curve. The more the
curve is towards the top left corner, the more perfect the performance of the algorithm is. The area
under the curve A ∈ [0, 1] is a good metric for judging the performance.

Remember:
FP + TN = N, #total number of negatives;
TP + FN = P, #total number of positives.

z To choose the best threshold, we select the point where the gradient is:

β =
N(VTN + CFP )

P (VTP + CFN )

where VTN and VTP are values of the true negative and true positive respectively; and CFP and
CFN are the costs of false positive and false negative respectively. Usually VTN = VTP = 0.

z Pixel neighborhoods are defined as 4-neighborhood or 8-neighborhood. Both give rise to pixel
connected paths and connected regions. Using a binary image, we can Connected component
label (multi-region segmentation) by assigning a unique label to each (4 or 8) connected region.
Can be done recursively in code - but need to decide on a search pattern for the neighborhood pixels
- it looks more like depth-first search

z Given a seed pixel, we can get binary segmentation by Region growing to connected regions
from the seed pixel. It can be codeed using a queue of pixels - making it look like breadth-first
search.

z Watershed Segmentation segments grayscale images and can be looked at as flooding the
grayscale topology with water. Starting at the lowest pixel value, it floods basins and marks segment
boundaries wherever different water catchments meet, when water level rises. This technique is often
applied on the gradient image. Typically has the problem of over-segmentation. It works by:
(1) pushing finding local minimma pixels into a queue (ordered by grayscale values). These seed
pixels may be specified.
(2) Pop pixel(s) from queue (with minimum value).
(3) Label neighboring pixels accordingly and add them to queue.
(4) Repeat from step (2) until queue empty.

z If we look at segmentation as a clustering problem, we can used K-Means approach - which
divides pixels into a set of k clusters based on their euclidean distance:
(1) Randomly generate k mean vectors.
(2) Assign each observation to one of k clusters whose mean vector is the closest.
(3) Calculate the new means to be the centroid of the observations in the cluster.
(4) Repeat from step (2) until no change in assignment.
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The approach is sensitive to outliers; plus we need to pick a k, the number of clusters. Note that it
can produce disjoint segments.

z Using a limited sized window, we can keep shifting the mean vector by looking at the mean of
points in the window. This is done until convergence. This method is Mean Shift. The step of
moving the mean vector is repeated until convergence. This iterative process is done for each pixel;
and a cluster is eventually formed of all pixels which lead to the same convergent mode. Also we
can merge clusters whose mode is nearby. This technique is robust to outliers, although the output
is highly dependent on the window size chosen.

Note that since both K-Means and Mean-Shift work in feature space for pixels, they can result in
disjoint segments.

z Efficient Graph based image segmentation Felzenszwalb 2004:

1. Start with each pixel being a segment. From here we would merge segments.

2. The internal difference of a segment is defined as:

Int(C) = max
e=MST (C,E)w(e)

where MST (C,E) denotes the minimum spanning tree of the segment C with edges E each
with a weight w(e). The intuition they propose for this measure is that this MST can only
remain connected if edges of atleast weight Int(C) are considered.

3. The difference between two segments C1, C2 is defined as:

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w(vi, vj)

i.e. the minimum weighted edge between two segments. If there is no edge Dif(C1, C2) = inf

4. In each step we can merge segments if this criterion is met:

Dif(C1, C2) < min(Int(C1) + τ(C1), Int(C2) + τ(C2)) = MInt(C1, C2)

where τ(C) = k/|C|. This dictates if the difference between the different components is smaller
than any of the two component edge differences, there is little chance of a boundary between
the two components, hence they can be merged. The τ(C) is there to provide some support
for merging only in absence of a strong edge - it also helps grow regions from single pixels (|C|
denotes the size of the component, and k is a constant).

5. Each step involves sorting un-connected edge strengths. Keep repeating until we can’t make
any more merges.
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6. Discusses different edge weighting schemes w(vi, vj), in which it chooses a function which is
based on the absolute intensity difference between pixels connected by an edge. They show
results using a feature space built on (x, y, r, g, b).

3 Transformations

z Gray Level transformation changes gray level of each pixel by f : R → R such that I2 =
f(I1(x, y)). There are two kinds of functions (all graphs are taken I2 against I1:

1. Linear function:
f(x) = αx+ β

- while preserving the range (0, 255). Positive β increases overall brightness and vice-versa.
Increasing α (making graph more steep) increases scaling of gray level values.

2. Non-linear function (Gamma Correction)

f(x) = 2551−γxγ

It helps adjust for differences between camera sensitivity and human eye. The graph bends
from the constant gradient line according to γ. Smaller the γ, more bending to the I2 side;
increasing the brightness of the image. Larger the γ more bending towards I1; decreasing the
brightness of the image.

3. Histogram equalization: aims to make the histogram flat, or make the histogram or to give
a constant gradient cumulative histogram. It is simply done by building the histogram and
then assigning the histogram’s values to individual pixels according to their gray scale values.

z Geometric transformations include Affine transformations:

(x′, y′) = T (x, y)[
x′

y′

]
=

[
a b
c d

] [
x
y

]
+

[
tx
ty

]
Affine transformation allow translation, scaling, rotation and shearing. The affine matrix is given in
the form of rotation/scaling followed by scaling/rotation followed by translation. It is easier to use
T−1 and then map pixels from Isrc to Idst, by iterating over the pixels of Idst. Since T−1(x, y) does
not always give us integer coordinates, we need to interpolate. Nearest neighbor interpolation
works by picking the nearest pixel. Arguably the most famous one is bilinear interpolation:

I2(x′, y′) = ∆x∆yI1(x2, y2) + (1−∆x)∆yI1(x1, y2) + ∆x(1−∆y)I1(x2, y1) + (1−∆x)(1−∆y)I1(x1, y1)

where (x, y) = T−1(x′, y′), and (x1, x2, y1, y2) are the four closest neighbors of (x, y)
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Quadratic interpolation fits a bi-quadratic function on a 3× 3 neighborhood of grid points; and
Cubic interpolation fits a bi-cubic function on a 4× 4 neighborhood of grid points.

z Affine transformations are 1st order polynomial transformations which maps lines to lines. Poly-
nomial transformations like the Quadratic warp can bend lines:

x′ = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2

y′ = b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2

This can also allow us to do control point warps. In this the user gives m points (since this
quadratic warp we need m ≥ 6 points) and their mappings. We use them to figure out the coefficients
which are used to map all the remaining points:x

′
1 y′1
...

...
x′m y′m

 =

1 x1 y1 x21 x1y1 y21
...

...
...

...
...

...
1 xm ym x2m xmym y2m


a0 b0

...
...

a5 b5


X2 = X1P ⇒ P = (XT

1 X1)−1XT
1 X2

z Image registration involves determining the ideal transformation that aligns two similar im-
ages. This can be done by optimization techniques that maximizes the similarity between two
images (like inverse of SSD):

S(I1, I2) = −
√∑
x∈I1

(I1(x)− I2(x))2

You can also use cross-correlation or mutual information.

4 Morphological Operators

z Morphological operators are used for local pixel transformations for processing region shapes
usually in binary images.

z Simple 8-neighbor Erosion (Minkowsky subtraction) is done by erasing any pixel set to 1, if one
of its 8-connected neighbor is set to 0.

Similarly, 8-neighbor Dilation (Minkowsky addition) is done by setting any 0 pixel to 1, if one of
its 8-connected neighbor is 1.
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These are used for smoothing region boundaries, or for removing noise/artefacts.

z Morphological operations take two arguments: (1) the input image, (2) the binary structuring
element whose center is known. The operation proceeds by aligning the structuring element (strel)
over each pixel and then comparing the pixel neighborhood with the strel neighborhood to get the
output.

Binary images and strel’s can be looked with set notation where a pixel is included in the set of it
is set to one:
(1) Union: I1 ∪ I2
(2) Intersection: I1 ∩ I2
(3) Complement: IC = {x : x 6∈ I}
(4) Difference (relative complement): I1\I2 = {x : x ∈ I1 and x 6∈ I2}
(5) Symmetry around point o (acts as 180◦rotation): S̆ = {o− x : x ∈ S}

z Fitting, Hitting and Missing, where S is the strel and I is the image:

1. S fits I at x if:
{y : y = x+ s, s ∈ S} ⊂ I

2. S hits I at x if:
{y : y = x− s, s ∈ S} ∩ I 6= {∅}

3. S misses I at x if:
{y : y = x− s, s ∈ S} ∩ I = {∅}

Note x+ s is translation of s to x, and x− s is the translation of 180◦ rotated s to x.

z Different morphological operations:

1. Erosion:

E(x) =

{
1 if S fits I at x

0 otherwise

E = I 	 S = {x = x+ s ∈ I for every s ∈ S}

2. Dilation:

E(x) =

{
1 if S̆ hits I at x

0 otherwise

E = I ⊕ S = {x = x− s ∈ I for any s ∈ S}
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Some rules to remember:

1. Erosion and dilation are dual operations:

(I 	 S)C = IC ⊕ S̆

2. Commutativity and associativity:

I ⊕ S = S ⊕ I (I ⊕ S)⊕ T = I ⊕ (S ⊕ T )

I 	 S 6= S 	 I (I 	 S)	 T = I 	 (S ⊕ T )

z Opening is erosion followed by dilation:

I ◦ S = (I 	 S)⊕ S

Closing is dilation followed by erosion:

I • S = (I ⊕ S)	 S

Both of them are idempotent operations. They are also dual operations:

(I • S)C = IC ◦ S̆

Opening has the property of retaining holes while remove noise (which was originally in the form of
small speckles) while closing has the property of removing holes and expanding noise. This behavior
should be evident from the ordering of erosion and dilation in both operations. To remove holes in
the foreground and islands (noise) in the background, do both opening and closing. Usually opening
followed by closing performs better for removing noise.

z Granulometry provides a size distribution of distinct regions or “granules” in the image (can
be related to counting red-blood cells). The method is simple (1) open the image with increasing
size of the strel, (2) count the number of connected component regions. We can then plot number of
regions against strel radius / size. The negative derivative of this graph is called the Granulometric
Pattern spectrum. Wherever it is close to 0 for a wide range of strel sizes, it gives a rough estimate
of the number of elements in the image.

z The Hit-and-Miss transform searches for an exact match of the structuring element. It
provides a simple form of template matching. We can also add don’t care terms in the structuring
element. It is given by:

H = I ⊗ S

Thinning and Thickening is defined using hit-and-miss transform:

9



Ahmad Humayun 4: Morphological Operators

1. Thinning:
I � S = I\(I ⊗ S)

2. Thickening
I � S = I ∪ (I ⊗ S)

Thinning and Thickening are dual operations:

(I � S)C = IC � S

These operations are often performed in sequence (Sequential Thickening/Thinning) with dif-
ferent structuring elements:

I � {Si : i = 1, . . . , n} = (((I � S1)� S2) . . . Sn)

In sequential thinning sometimes the same strel is used in different just rotations. This is called the
Golay element/alphabet:

L1

0 0 0
∗ 1 ∗
1 1 1

L2

∗ 0 0
1 1 0
∗ 1 ∗

L3

1 ∗ 0
1 1 0
1 ∗ 0

L4

∗ 1 ∗
1 1 0
∗ 0 0

. . . L8

0 0 ∗
0 1 1
∗ 1 ∗

z The Medial Axis Transform (MAT) is also a skeletonization technique. It can be basically
looked as starting a grass-fire at the boundaries, and the skeleton will be lines where two fire fronts
meet. It can also be looked as the union of centers of maximal discs which touch atleast two
boundaries simultaneously. Using the radius of the discs we can also order the skeleton pixels.

z Skeletonization can also be done through morphology using the structuring element:

B =
0 1 0
1 1 1
0 1 0

The nth skeleton subset is:
Sn(X) = (X 	n B) [(X 	n B) ◦B]

The skeleton is the union of all skeleton subsets:

S(X) =

∞⋃
n=1

Sn(X)

Remember we can reconstruct X:

X =

∞⋃
n=1

Sn(X)⊕n B
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We can reconstruct X from the MAT but not directly from S(X).

z Gray-level Morphology (the image and the strel are grey level arrays) can be used for removing
speckle noise, smoothing, etc. We define an Umbra U(f) as filling all the pixels below the top surface,
and the top surface T (R) as the inverse of it. Now erosion is defined as:

f 	 k = T (U(f)	 U(k))

and dilation as:
f ⊕ k = T (U(f)⊕ U(k))

5 Image Filtering

z L is a linear operation if it preserves linear combinations:

L(αI1 + βI2) = αL(I1) + βL(I2)

Examples of linear operators:

1. Correlation:

I ′(x, y) =

a∑
i=−a

b∑
j=−b

K(i, j)I(x+ i, y + j)

This is just like centering the kernel over the position (x, y)Correlation of kernel K with a
unit impulse reveals a 180◦ rotated copy of the kernel.

2. Convolution:

I ′(x, y) =

a∑
i=−a

b∑
j=−b

K(i, j)I(x− i, y − j)

=

a∑
i=−a

b∑
j=−b

K(−i, −j)I(x+ i, y + j)

I ′ = K ∗ I

So if K(i, j) = K(−i,−j) then correlation will equal convolution.

z Types of filters (note that smoothing kernels should sum to 1 to avoid inducing any brightness
change in the image; and sharpening kernels should sum to 0):
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1. Blurring with box filter / mean filter (low-pass filter):

K =
1

9

1 1 1
1 1 1
1 1 1


If not using a box, and giving more weightage closer to the center will give a weighted smooth-
ing filter.

2. Sharpening with Laplacian filter:

K =

0 0 0
0 2 0
0 0 0

− 1

9

1 1 1
1 1 1
1 1 1


3. Gaussian Filter - smoothing:

Gσ(x, y) =
1

2πσ2
e−(x

2+y2)/2σ2

=

(
1

2πσ2
e−x

2/2σ2

)(
1

2πσ2
e−y

2/2σ2

)
the mask is separable

= g(x)g(y) allows I ′ = g(x) ∗ (g(y) ∗ I)

Its useful to set the gaussian filter’s half-width greater than 3σ. A gaussian convolves by itself
is a gaussian with std. dev of σ

√
2. Such repeated gaussian convolution gives us the scale space

of the image. Important facts about the gaussian kernel: (1) single lobe (also in frequency
domain); (2) neighbor influence decreases monotnoically.

Need to check what happens when filter falls off the edge of the image. Possible solutions: (1) clip
filter, (2) wrap around, (3) copy edge, (4) reflect across edge, (5) vary filter at edge.

Smoothing in filtering is almost equivalent to integration; and sharpening is like differentiation.

Sharpening can also be looked at as the 1st and 2nd derivatives:

1. 1st derivative:

1D ⇒ ∂f

∂x
= f(x+ 1)− f(x)

2D ⇒ ∇f =

[
∂f/∂x
∂f/∂y

]
=

[
gx
gy

]
|∇f | =

√
g2x + g2y, tanα = gy/gx

The differential gx or gy can be computed by any differential operator †.
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2. 2nd derivative:

1D ⇒ ∂2f

∂x2
= f(x+ 1) + f(x− 1)− 2f(x)

2D ⇒ ∇2f =
∂2f

∂x2
+
∂2f

∂y20 1 0
1 −4 1
0 1 0

→ {
∂2f
∂x2 = f(x+ 1, y) + f(x− 1, y)− 2f(x, y)
∂2f
∂y2 = f(x, y + 1) + f(x, y − 1)− 2f(x, y)

Here we can derive the laplacian kernel as: K =

−1 −1 −1
−1 8 −1
−1 −1 −1



† We can approximate differentation by convolution with the kernel K =
[
−1 1

]
. The following

are some other differential operators:

Prewitt K =

−1 0 1
−1 0 1
−1 0 1

 Sobel K =

−1 0 1
−2 0 2
−1 0 1



z Sharpening over an image can be done to increase high frequency components to enhance edges.
It is usually done as: I ′ = I +α(K ∗ I), α ∈ [0, 1]. Hence sharpening can be done as I ′ = I +α∇2I
which ∇2 is the Laplacian. Similarly we can perform unsharpening : I ′ = I + α(I −K ∗ I)

z The Fourier Domain represents the image as the sum of weighted frequency components
(mathematically represented as a sum of sines and cosines):

1. The continuous Fourier transform in 1D:

F{f(t)} = F (µ) =

∫ ∞
−∞

f(t)e−j2πµtdt

F−1{F (µ)} = f(t) =

∫ ∞
−∞

F (µ)ej2πµtdµ

The inverse transform can be thought of as summing the contribution of signals with different
frequencies (and amplitudes) to reconstruct a spatially and temporally periodic signal.
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2. The Discrete Fourier transform (DFT) in 1D:

F (u) =

M−1∑
x=0

f(x)e−j2πux/M , u = 0, 1, 2, . . . ,M − 1

F−1 = f(x) =
1

M

M−1∑
u=0

F (u)ej2πux/M , x = 0, 1, 2, . . . ,M − 1

Where M could be the length of a row of an image indexed by x. The function returned by
DFT is indexed by u which represents the frequency of the sinusoidal component (remember
euler’s formula: ejθ = cos θ+ j sin θ). DFT can be thought of a change of basis: we move from
temporal space where signal is represented as coefficients of delta functions to frequency where
signal is represented as coefficients of sinusoidal basis functions. The DFT in 2D is given by:

F (u, v) =

M−1∑
x=0

N−1∑
y=0

f(x, y)e−j2π(ux
M + vy

N ), u = 0, 1, 2, . . . ,M − 1, v = 0, 1, 2, . . . , N − 1

The F returned as an M ×N array of complex numbers. We usually plot |F | (the magnitude
/ amplitude spectrum) and argF (is the phase spectrum) as images. F is periodic: F (u, v) =
F (u + M,v) = F (u, v + N) = F (u + M,v + N); and has conjugate symmetry: |F (u, v)| =
|F (−u,−v)|. The phase spectrum holds most of the information. The magnitude image usually
shows that the lower frequencies (near the center pixel giving the DC component) contains
more image information than the higher ones. The image would also show the dominating
directions in the original image.

Convolution, now, can be done in Fourier domain by F [f ∗ g] = F [f ]F [g]: (1) Compute DFT of f
and g, (2) Multiply F and G (centering the smaller image on the bigger one), (3) compute inverse
of FG. Filters can also be expressed in Fourier domain:

1. Ideal low pass filter:

K[u.v] =

{
0 u2 + v2 > r2

1 otherwise

The inverse of this would be ideal high pass filter.

2. Gaussian low pass filter:

K[u.v] = exp

[
−u

2 + v2

2σ2

]
1−K(u, v) would be Gaussian high pass filter.

z Non-linear filters include Rank filters which are based on picking values from the neighborhood
according to grel levels:
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1. Max-filter:
I ′(m,n) = max{I(i, j) : (i, j) ∈ N(m,n)}

2. Min-filter:
I ′(m,n) = min{I(i, j) : (i, j) ∈ N(m,n)}

3. Median-filter:
I ′(m,n) = median{I(i, j) : (i, j) ∈ N(m,n)}

4. Range-filter:

I ′(m,n) = max{I(i, j) : (i, j) ∈ N(m,n)} −min{I(i, j) : (i, j) ∈ N(m,n)}
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6 Edge Detection

z Undersampling can have the effect of missing out on information. This can have adverse effects
while trying to reconstruct the continuous signal back from the sampling. This results in aliasing -
signals “traveling in disguise” as other frequencies. We can prevent aliasing by introducing low pass
filter before sampling the signal e.g. a weighted moving average filter. We can, of course, increase
the sampling rate making it above the Nyquist Frequency.

z Image sub-sampling is about throwing every other row and column to create 1/2 sized image.
As said before, to achieve better results, do low-pass Gaussian filtering before sub-sampling. The
filter size should double with each 1/2 size reduction.

z One way to blend two images is to simply weight them accordingly across the boundary.

z As discussed before we cab build a sharpening (edge detection) filter like a Laplacian. Because
this kernel is essentially an approximation of the second derivative measurement on the image they
are very sensitive to noise. To counter this, the image is often Gaussian smoothed before applying
the Laplacian filter. This pre-processing step reduces the high frequency noise components prior to
the differentiation step. We can combine the Gaussian filter with the Laplacian filter to give the
Laplacian of a Gaussian (LoG) filter.

z A summary of the steps in Laplacian pyramid coding and decoding. First the original image
g0 is used to create images at different Gaussian pyramid levels g1, g2, . . .. Levels of the Laplacian
pyramid L0, L1, . . . are then computed as the differences between adjacent Gaussian levels. Laplacian
pyramid elements are quantized to yield the Laplacian pyramid code C0, C1, . . .. To reconstruct the
image, we only need these codes - which is generated by summing levels of the code pyramid.

z The basic steps behind good edge detection techniques is: (1) noise reduction; (2) edge enhance-
ment; (3) edge localization. One way to do this would be to simply compute the image gradients:

gx(x, y) = f(x+ 1, y)− f(x− 1, y)

gy(x, y) = f(x, y + 1)− f(x, y − 1)

These can be represented by the Prewitt or Sobel kernels. The Edge map is a way to get the

location of the edges, and it is created by thresholding the gradient magnitude: |g| =
√
g2x + g2y > τ

z Canny Edge Detector combines noise reduction and edge enhancement in the following steps:

1. Either smooth with Gaussian and differentiate OR convolve with the derivative of a Gaussian.
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2. Quantizing the gradient direction, we keep only the gradient magnitudes which are local
maximum in their gradient direction. We set all other gradient magnitudes to 0. This is called
Non-maximal suppression.

3. Now we can simply threshold the edge map. Since it is nearly impossible to specify a single
threshold dividing edges from non-edges, we use a low and a high threshold. Since we will
certainly be sure about high thresholded pixels being edges, we will add 8-connected neighbors
from the low thresholded edge map to this pixel. Iteratively doing this will build the complete
edge-map. This method is called Hysteresis thresholding.

z Marr-Hilderth Edge Detector:

1. Uses second derivative of a Gaussian (called the Laplacian of a Gaussian):

LOG =

(
∂2

∂x2
+

∂2

∂y2

)
G(x, y)

2. Find zero crossings after convolving with LOG.

This seems to be quite sensitive to noise. Remember that the LOG can be approximated with the
difference of two Gaussians, as illustrated in the scale space method:

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2G

z Model Fitting is a method of finding edges by fitting a surface with an edge. The parameters
for this model edge are usually (1) orientation, (2) position, (3) intensities either side of the edge. It
finds least square fits in each small window. Hough Transform is one technique for model fitting:

1. At every edge pixel the equation of the local edge line is stored:

x cos θ + y sin θ = ρ

only θ and ρ are stored.

2. By quantizing θ a histogram of lines is stored. Alternatively we can simply take the radon
transform of an image which is a graph of ρ against θ (in this case the origin is the center pixel
- while in Generalized Hough transform which is used for object detection the center pixel is
taken as the center of the object).

3. Thresholding the graph gives us dominant lines in the image.
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Unlike the first (canny) and second derivative (marr-hilderth) approach to edge detection, model
fitting is not that sensitive to noise. Although it is slow.

z Edge-detector performance can be gauged by:

1. Probability of false edges

2. Probability of missing edges

3. Error in edge angle

4. Mean squared distance from true edge

7 Corner / Feature Detection

z Feature detection is important in a wide variety of applications including (1) stereo matching and
3D reconstruction, (2) tracking (find same features in next frame), (3) localization, (4) recognition.
Corner/Feature/Interest points usually need to have the following characteristics:

1. They are distinctive

2. Stable from image to image

3. They are invariant to view point

4. Invariant to lighting conditions

5. Invariant to object deformations and partial occlusions

6. . . . if possible, geometrically meaningful

z Moravec Interest Operator is quite simple:

1. Uses a window surrounding each pixel as a matching template

2. Uses autocorrelation (SSD) in the surrounding area of the pixel with the matching template:

ε(∆x,∆y) =
∑

(x,y)∈N(3,3)

w(x, y)(I(x+ ∆x, y + ∆y)− I(x, y))2 (1)
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where w is the weight function. Hence good matches in any direction means that the region
is flat. Good matches in one direction indicates an edge. Good matches in no direction
marks a distinctive point feature. Hence cornerness measure could be the minimum ε in the
neighborhood.

3. We can do non-maximal suppression i.e. set pixels which have an 8-neighbor with a higher
cornerness to zero. This can be done efficiently by dilating the cornerness image.

4. In the end we threshold the cornerness image.

z To construct the image structure tensor we will simply generalize the underlined part in
Equation 1 using Taylor expansion:

I(x+ ∆x, y + ∆y) ≈ I(x, y) +
[
∂I(x,y)
∂x

∂I(x,y)
∂y

] [∆x
∆y

]
Hence we can derive the cornerness value to be the following:

ε(∆x,∆y) =
∑
x∈N

∑
y∈N

[[
∂I(x,y)
∂x

∂I(x,y)
∂y

] [
∆x
∆y

]]2

=
∑
x∈N

∑
y∈N

[
∆x ∆y

] [[∂I(x,y)
∂x

∂I(x,y)
∂y

] [
∂I(x,y)
∂x

∂I(x,y)
∂y

]] [∆x
∆y

]

=
∑
x∈N

∑
y∈N

[
∆x ∆y

] [ 〈I2x〉 〈IxIy〉
〈IxIy〉 〈I2y 〉

] [
∆x
∆y

]
= xTSx

The image structure tensor S is the Harris matrix where the angle brackets denote summation
over the neighborhood. The Harris Corner Detector uses S since it captures the curvature of the
local autocorrelation surface. we can reject unstable image structures (like edges instead of corners)
by singular values of image structure tensor S (corner: both high eigenvalues; edge: one large one
small; homogeneous: both small). The characteristic polynomial is given by:

λ2 − λ
(
〈I2x〉+ 〈I2y 〉

)
+ 〈I2x〉〈I2x〉 − 〈IxIy〉2 = 0

Since eigen-decomposition can be expensive, we simply compute:

C = |S|/Trace(S) = λ1λ2/(λ1 + λ2)

Harris Corner Detector uses the C image to get the corner/feature points. After performing non-
maximal suppression it thresholds the image. We can do Gaussian smoothing when computing Ix
and Iy to eliminate multiple responses to the same corner.

Harris and Stephens combines edge and corner detection by using R = |S| − kTrace2(S). Using
0 < k < 0.25 we get an R where edges as negative and corners as positive.
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z Univalue Segment Assimilating Nucleus (USAN) uses a circular mask (whose center is
the nucleus) to develop a template which lies within its circular boundary. The USAN is simply
the ratio of area of the template which has the same intensity within a threshold as the nucleus.
Note that at corners, USAN should be less than half. Hence we can describe a Smallest USAN
(SUSAN for feature points.

z In FAST (Feature from Accelerated Segmented Test), a feature is also found at each
pixel by checking pixels that are at a given radius. Around each pixel p, if n contiguous pixels are
all brighter than the nucleus by at least t or all darker than the nucleus by t, then the pixel under
the nucleus is considered to be a feature. The radius is set to 3 (corresponding to a circle of 16
pixels circumference), and n is 9. The values associated with darker, similar and brighter are d, s, b.
Now we train a decision tree to maximize information gain:

H(P )−H(Pd)−H(Ps)−H(Pd)

z SIFT - scale invariant feature transform is a method to find robust image keypoints. This
is done by encoding the properties of the neighborhood in a descriptor vector. We can then match
points defining an appropriate distance metric.

It leverages the idea that images have different structures at various different scales:

1. Make a scale space which is simply a stack of images (the original one at the bottom)
produced by convolving the top-most image in the stack by a fixed Gaussian (blurring) - these
represent structures at increasingly large scales.

2. Since image gradients are more stable features than raw luminance, we take the difference of
consecutive images in the scale space (DOG - difference of Gaussians):

G(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

DOG → D(x, y, σ) = G(x, y, σ) ∗G(x, y, σ) ∗ I(x, y)−G(x, y, σ) ∗ I(x, y)

= (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (2)

We can do step 2 because both convolution and difference are linear operators.

3. Now find the extrema in DOG space i.e. points larger (or smaller) than 26 neighbors in the
DOG stack.

4. Now we need localize keypoints to subpixel accuracy, which is done by Taylor expansion up to
quadratic terms of the scale space function D(x, y, σ) around the potential keypoint (taking
x = (x, y, σ)):

D(x) = D +
∂DT

∂x
x +

1

2
xT ∂

2D

∂x2
x
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where D and its derivatives are evaluated at the keypoint and x is the offset from this keypoint.
Taking the derivative of this function with respect to this offset and setting the resulting
expression to zero allows us to estimate the position of the keypoint up to sub-pixel accuracy:

0 =
∂DT

∂x
+
∂2D

∂x2
x̂

∂2D
∂x2

∂2D
∂yx

∂2D
∂σx

∂2D
∂yx

∂2D
∂y2

∂2D
∂σy

∂2D
∂σx

∂2D
∂σy

∂2D
∂σ2


xy
σ

 = −

∂D∂x∂D
∂y
∂D
∂σ


x̂ = −∂

2D−1

∂x2

∂D

∂x

5. Use of image structure tensor (see above) to reject unstable image structures:

H =

[
Dxx Dxy

Dxy Dyy

]

6. Gradients binned by orientation to form a histogram, and orientation of feature is taken
as the peak of the histogram (if more than one peak exists, split into two keypoints with
different orientations). Since the descriptor is computed relative to this orientation, it achieves
rotational invariance.

z Now the task comes down to finding the keypoint correspondence. Once SIFT gives us stable
feature points, they need to be characterized by their appearance. This is done by a histogram of
image gradients in a region around a keypoint:

1. Calculate the image gradients around a keypoint, weighted by a gaussian.

2. Pool over a space to form 8 bin orientation histograms in a 4× 4 grid.

3. The values of histograms are concatenated to form a 128 elements feature vector f (8×4×4).
Normalize to unit length to make them invariant to changes in contrast.

The feature vector f is matched to feature vectors F′ in the other image around a certain region.
The similarity measure is the Euclidean distance between the SIFT descriptors.
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8 Feature Characterization

z Region/Spatial moments for a region R in the image I:

mpq =
∑

(x,y)∈R

xpyqI(x, y)

The order of the moment is p+ q. So m00 is simply the area. The normalized 1st order moment
of a variable (pq = 10 or 01) is the expectation:

x̄ =
m10

m00
, ȳ =

m01

m00

The central moment is given by:

µpq =
∑

(x,y)∈R

(x− x̄)p(y − ȳ)qI(x, y)

1. 0th order central moment is the Area: µ00 = m00

2. 1st order central moment which is equal to 0!

3. 2nd order central moment is called the variance (remember σ2 = var). Also µ11 gives covari-
ance.

4. 3rd order central moment is skewness - tells how lopsided is the region.

5. 4th order central moment is kurtosis - tells if the region is skinny/tall or short/wide.

To get scale-invariance, we can use normalized central moments:

ϑpq =
µpq

(µ00)α
, α =

p+ q

2
+ 1

This is leads us to Hu’s moment features, denoted by ϕ, which are invariant to translation, scale
and rotation:

ϕ1 = ϑ20 + ϑ02

ϕ2 = (ϑ20 − ϑ02)2 + 4ϑ211

ϕ3 = (ϑ30 − 3ϑ12)2 + (3ϑ21 − ϑ03)2

ϕ4 = (ϑ30 + ϑ12)2 + (ϑ21 + ϑ03)2
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z The are also a list of Affine invariants, where the first one is:

A1 = [µ20µ02 − µ2
11]/µ4

00

Other region descriptors include:

1. Direction: θ = 1
2 tan−1

(
2µ11

µ20−µ02

)
2. Rectangularity: max ratio of R’s area to its smallest bounding rectangle.

3. Euler number: #Connected Components−#Holes

z Boundary features include:

1. Perimeter P (R) i.e. the length of the boundary of region R.

2. Compactness C(R) = m00/P (R)2

3. Boundary coding schemes:

(a) List of pixels

(b) Chain codes: Rather than encoding each pixel value, we can store just the origin and
the path given by the direction from the previous point. The Freeman’s code gives the
direction encoding scheme:

1
2 0

3

3 2 1
4 0
5 6 7

Steps for encoding boundary:
(1) Start with leftmost top pixel
(2) Follow the boundary anti-clockwise
(3) Stop when we start repeating the path

(c) Fourier Descriptors: a boundary can be represented by U = {(xn, yn) : 1 ≤ n ≤ N}.
Now the coordinates x and y are periodic functions of n : u(n) = x(n) + jy(n), hence we
can represent them by the frequency components of x and y. So using DFT we generate
the fourier descriptors an and bn, n = 0, . . . , N − 1:

an =
1

N

N−1∑
k=0

xke
−j2πnk/N

bn =
1

N

N−1∑
k=0

yke
−j2πnk/N
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To get rotation invariance we can use rn =
√
|an|2 + |bn|2; and scale invariance by wn =

rn/r1. It is worth noting that the lower n components encode broad shape characteristics
while the higher components encode detail. Scaling just requires multiplying coefficients
by α and rotation requires multiplying coefficients by exp(jθ).

z Traditional vectorization involves fitting curves to binary raster line images. Object-based
vectorization creates and renders meshes extracted from individual objects contained in grayscale
or color raster images.

z GLOH (Gradient Location and Orientation Histogram) is a robust image SIFT -like
descriptor that considers more spatial regions for the histograms. Unlike SIFT it uses a polar
location grid for developing a histogram of quantized orientations. The higher dimensionality of the
descriptor is reduced to 64 through principal components analysis (PCA).

z Shape Context also uses an orientation histogram: (1) compute the perimeter points of the
shape (subsample?), (2) compute log-polar graph for each point (log r against θ), (3) normalize for
average scale. Matching can be done by shape context by establishing correspondences between the
points for two shapes using the Hungarian method - with weights given by the sum of histogram
dissimilarity and tangent angle dissimilarity.

z HOGs (Histogram of Oriented Gradients) can be used for shape matching. (1) Compute
the average gradient image from the training images, (2) Divide image into blocks and compute
maximum positive SVM and negative SVM weights, (3) count occurrences of gradient orientation
in localized portions, (4) weigh them by the SVM weights. Found that fine-scale gradients, fine
orientation binning, and relatively coarse spatial binning works best for feature localization.

z Textons are fundamentally micro-structures in natural images. We can learn these textons
from texture images. An image is a superposition of image bases selected from an over-complete
dictionary of Gabor (and maybe even Laplacian of Gaussian) functions at various locations, scales,
and orientations. This is called the Gabor-filter bank. In short we can process images for features
based on textons - where textons are filter responses of the Gabor-filter bank.

9 Color

z Humans photoreceptors are neurons that absorb photons and signal the brain - come in two
flavors - 120 million rods (best for motion perception) and 6-7 million 3 types of cones for color
perception. These photoreceptors send input to photoreceptive ganglion cells.

z Metamers are light spectra with the same tristimulus response i.e. they are mixture of wave-
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lengths which induce the same response in the human eye.

z Color cameras:

1. Prism color camera separates light into 3 beams using dichroic prism. It requires 3 sensors
for capturing the separated light.

2. Filter mosaic is to coat filter directly onto the sensor (like a bayer pattern) - then demosaic
to obtain the full color image in full resolution. This gives us our usual CCD cameras.

3. Filter wheel works by rotating different filters infront of the lens - but only suitable for static
scenes.

4. CMOS Foveon’s X3 works by sampling all three colors at the same pixel.

z White balance is the process of removing unrealistic color casts, so that objects which appear
white in person are rendered white in the image. This variation can happen under different lighting
conditions (remember the color signal is a product of the illumination and reflectance).

z For color imaging, measurement from the k − th sensor at pixel (x, y) is:

Ik(x, y) =

∫ ∞
0

Rk(λ)L(x, y, λ)dΛ (3)

where L is the scene radiance/image irradiance, and Rk is the response function of the kth sensor.
The integrated white condition is satisfied if

∫∞
0
Rk(λ)dλ is equal for each k, in which case each

Ik is equal for white light.

z There are two primary kinds of color models:

1. Additive model: adds light and has RGB as their primary colors. (remember R + B =
magenta; B +G = cyan; and G+R = yellow

2. Subtractive model: adds pigments (subtracts light) and has Cyan (C), Magenta (M) and
Yellow (Y) as their primary colors:

C = B +G = 1−R
M = R+B = 1−G
Y = G+R = 1−B

We can also describe colors perceptually:
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1. Brightness / Lightness / intensity: is the chromatic equivalent of overall intensity:

I = R + G + B

2. Hue: describes the dominant wavelength.

H = tan−1

( √
3(G−B)

(R−G) + (R−B)

)

3. Saturation: refers to purity of the dominant wavelength:

S = 1−
(

3 min{R,G,B}
R+G+B

)

4. Chromaticity: combines hue and saturation

Remember RYGCBM hexagon. Normalized color: (r, g, b) = (R/I, G/I, B/I), removes depen-
dence on geometry.

HSI(L) can be described by the cylinder where the angle is given by the hue, the distance from the
center is given by saturation and going up the cylinder increases the lightness/intensity (top of the
cylinder is white, bottom is black).

HSV can be described by the cylinder where the angle and distance is similarly defined, and going
up the cylinder increases the value.

z CIE primaries define primary colors as XYZ, by which we can produce any color as a linear
combination (positive coefficients) of XYZ pure colors. CIE diagrams represents all chromaticities
visible to the eye. These are shown in color and this region is called the gamut of the human eye
(is tongue-shaped). The curved edge of the gamut is called the spectral locus and corresponds to
monochromatic light (fully saturated colors), with wavelengths listed in nanometers. The straight
edge on the lower part of the gamut is called the line of purples. These colors, although they are on
the border of the gamut, have no counterpart in monochromatic light. Less saturated colors appear
in the interior of the figure with white at the center. It has the following interesting properties: (1)
a line joining any two points, then any color along the line can be given by the mixture of colors
at the two points; (2) this idea can be extended to triangle (in fact to any convex shape); (3) Any
line from the locus to the center is of constant hue; (4) a set of colors a device can disply is given
by the triangle of its primary colors.

z In Shafer’s dichromatic reflectance model, scene radiance/image irradiance has two com-
ponents:

L(λ) = mscs(λ) +mbcb(λ)
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cs is the surface reflected component, cb is the body reflected component, and ms and mb are scale
factors depending on illumination, view direction, and surface orientation:

cs(λ) = e(λ)

cb(λ) = σ(λ)e(λ)

where σ is the surface reflectance, and e is the scene irradiance (illumination). Now Equation 3 can
be replaced by:

C = msCs +mbCb

where Cs =

∫
R(λ)e(λ)dλ

Cb =

∫
R(λ)σ(λ)e(λ)dλ

Planar cluster: mb and ms vary over a surface with fixed σ. For Lambertian surfaces mb = cos θ
where θ is the angle of incidence. Often ms is non-zero for only a few orientations of the surface.
For matte materials ms = 0, and C lies on the diffuse reflectance line. For shiny materials C lies
on the specular line, since mb = 0

z Humar color perception is independent of illumination color (i.e. we see surface reflectance rather
than scene radiance). Correcting colors for illumination is called color constancy. If we suppose
Rk(λ) = δ(λk) and matte reflection (ms = 0), then (R, G, B) → (αR, βG, γB) under change in
illumination (where (α, β, γ) will be the illumination color). To correct this we do illumination
correction:

R′ =
NR∑
R
, G′ =

NG∑
G
, B′ =

NB∑
B

To bring invariance to illumination color and intensity:

R′ =
R1G2

R2G1
, G′ =

G1B2

G2B1
, B′ =

B1R2

B2R1

L*,a*,b* is derived from CIE, which ensures that any change in color value, brings an equivalent
change according to visual importance (uncorrelated color space).

10 Matching and Flow

z Usually descriptors are evaluated based on a recall against precision graph:

Recall =
TP

TP + FN

Precision =
TP

TP + FP
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z Chamfer Matching is an idea for model matching. Here we are given a model binary image
and an input image. (1) we get the edges of the input image (after pruning week edges), (2) then
we get the euclidean distance transform of the edge map, (3) the binary model is shifted over the
distance transform image and at each shift position, the sum of distances at the model pixels is
determined:

n∑
i=1

m∑
j=1

T (i, j)D(i+ k, j + l)

and the shift position producing the smallest sum is chosen as the best-match position of the model
in the image.

z Hausdorff Distance is a measure which ranks each point in A (the binary template) based on
closeness to a point in B (the input binary image): and the measure is the most mis-matched point:

H(A,B) = max(h(A,B), h(B,A))

where h(A,B) = max
a∈A

min
b∈B
‖ a− b ‖

Another method for template matching is Cross-correlation:

S(x, y) =
∑

(u,v)∈Nm×n

I(x+ u, y + v)T (u, v)

The problem with cross-correlation technique is that if I varies with position, bright patch will beat
the right patch; also range of S depends on the size of the template. To correct for this we use
Normalized cross-correlation:

C(x, y) =

∑
(u,v)∈Nm×n

[I(x+ u, y + v)− Ī][T (u, v)− T̄ ]√∑
(u,v)∈Nm×n

[I(x+ u, y + v)− Ī]2
∑

(u,v)∈Nm×n
[T (u, v)− T̄ ]2

Other robust metrics include:

dα(x, y) =

 ∑
(u,v)∈Nm×n

|I(x+ u, y + v)− T (u, v)|α
1/α

α = 1 is SAD, α = 2 is SSD, larger α makes d more sensitive, and as α→∞ this become more like
maximum distance in N .

z Optical Flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene
caused by the relative motion between an observer (an eye or a camera) and the scene itself. It is a
dense form of tracking i.e. where each individual pixel went. It makes two simplifying assumptions:
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1. The Brightness constancy assumption (BCE), says that the brightness value doesn’t
change for each pixel:

I(x, y, t) = I(x+ dx, y + dy, t+ dt)

2. Nearby points move in a similar fashion.

Using the BCE, we can use the Taylor expansion to write:

I(x+ dx, y + dy, t+ dt) = I(x, y, t) + Ixdx+ Iydy + Itdt+ H.O.T︸ ︷︷ ︸
terms we will ignore

Hence if dx and dy are small, the brightness constancy assumption will hold and we can simplify
this to:

−It = Ix
dx

dt
+ Iy

dy

dt
(4)

Note that dx
dt and dy

dt are the speeds of the pixels. Note that there is only one equation to solve
for these two unknowns. We can only get the perpendicular least squares component but we can’t
compute the parallel component. This can be related to the Aperture problem since we are only
looking in a small neighborhood: the component of the motion field orthogonal to the spatial image
gradient is not constrained by the BCE. The Lucas-Kanade Method approaches this problem
(to solves the equation 4) by over constraining it; since we can suppose that the motion would be
the same in a neighborhood we can write:−It1...

−It9

 =

Ix1 Iy1
...

...
Ix9 Iy9

[dxdtdy
dt

]

Since the motion could be large, the second order terms could dominate. But we threw them out!
Solution: do a coarse-to-fine estimation i.e. make an image pyramid of the two frames, and then
solve the for dx

dt and dy
dt at each level and propogate the speeds as we go down the pyramid.
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