
Chapter 1

Single Camera Geometry

z Over-parameterised 2D line:
ax̂+ bŷ + c = 0

where it can be converted to the ŷ = m′x̂+ c′ line by m′ = −ab , c′ = − cb

z Homogeneous coordinates for 2D points:

x̂ =

[
x̂
ŷ

]
→ x =

xy
z


where x̂ = x/z and ŷ = y/z. Hence (sx, sy, sz)T describe the same point in 2D space. Similarly,
homogeneous coordinates for 3D points:

x̂ =

x̂ŷ
ẑ

 → x =


x
y
z
w



z Properties of using Homogeneous coordinates:

1. Lines and points intersect if Lx = 0

2. Points at infinity are represented by setting z = 0 like x = (1, 0, 0)T where its a point at infinity in
the direction (1, 0)

3. Intersection of lines is through cross-product: x = L1 × L2

4. Line joining two points is also done through cross-product: L = x1 × x2
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The cross-product is computed as:

a× b =

∣∣∣∣∣∣
i j k
ai aj ak
bi bj bk

∣∣∣∣∣∣
=

∣∣∣∣aj ak
bj bk

∣∣∣∣ i− ∣∣∣∣ai ak
bi bk

∣∣∣∣ j +

∣∣∣∣ai aj
bi bj

∣∣∣∣k
z Rotation + Translation (Euclidean / Isometry): cos θ sin θ tx

− sin θ cos θ ty
0 0 1


transformation matrix in this form is rotation followed by translation. 3 degrees of freedom. Properties
of Rotational Matrix R includes:

1. RT = R−1

2. det(R) = 1

3. Raxis,(θ1+θ2) = Raxis,θ1Raxis,θ2

4. all singular values equal 1

z Similarity:  s cos θ s sin θ tx
−s sin θ s cos θ ty

0 0 1


transformation matrix in this form is scaling/rotation followed by rotation/scaling followed by translation.
4 degrees of freedom (only one scaling parameter s). For rotation followed by translation followed by
scaling, the whole transformation matrix would be the same except that the translation would also be
influenced by the scaling parameter t̂x = stx , t̂y = sty

z Affine: a11 a12 tx
a21 a22 ty
0 0 1


is rotation, shearing, scaling, and translation. Has 6 degrees of freedom.

z Projective also called Homography or collinearity:

TPrj = H =

h11 h12 h13

h21 h22 h23

h31 h32 h33


can map any four point to any other 4. Has 8 degrees of freedom; the 9th parameter is a redundant scale
parameter. The resultant transformed point (homogeneous coordinates) is a linear combination of the
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columns of TPrj :

x̂′ =

h11x̂+ h12ŷ + h13

h21x̂+ h22ŷ + h23

h31x̂+ h32ŷ + h33

 =

hT
1 x̂
hT

2 x̂
hT

3 x̂

 (1.1)

Iff x̂ =

x̂ŷ
1

 because this is not a homogeneous coordinate. Here hT
r is the transpose of the rth row of

H.

z DLT (Direct Linear Transform Algorithm) for computing Homography: given x1···N in the first
image and x′1···N in the second image, find the homography H which best matches these points. Generally
the problem is of minimization:

H = arg min
H′

N∑
i=1

||x′i −H′xi||2

Following from Equation 1.1, since we are dealing with homogeneous coordinates, the point xi will

represent the same point if it is multiplied by a scale factor: xi = s

x̂iŷi
1

 =

xiyi
zi

 = sx̂i. Now we can

state that sx̂′i = Hxi:

Hxi =

hT
1 xi
hT

2 xi
hT

3 xi

 = sx̂′i = x′i

Since x′i needs to be parallel to Hxi (remember they are homogeneous coordinates representing the same
2D point), their cross-product would be zero:

x′i ×Hxi =

∣∣∣∣∣∣
i j k
x′i y′i z′i
hT

1 xi hT
2 xi hT

3 xi

∣∣∣∣∣∣ =
[
0
]

=

y′ihT
3 xi − z′ihT

2 xi
z′ih

T
1 xi − x′ihT

3 xi
x′ih

T
2 xi − y′ihT

1 xi

 =
[
0
]

=

 0T −z′ixT
i y′ix

T
i

z′ix
T
i 0T −x′ixT

i

−y′ixT
i x′ix

T
i 0T

h1

h2

h3

 =
[
0
]

=

[
0T −z′ixT

i y′ix
T
i

z′ix
T
i 0T −x′ixT

i

]
︸ ︷︷ ︸

Ai


h11

h12

h13

h21

h22

h23

h31

h32

h33


︸ ︷︷ ︸

h

=
[
0
]

In the last step, we ignored the last row because this is true for upto a scale factor, and the last row
would just contribute the (non-zero) scale which can be different for different points. Constructing a
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joint matrix, we have:

Ah =


0T −z′1xT

1 y′1x
T
1

z′1x
T
1 0T −x′1xT

1
...

...
...

0T −z′NxT
N y′NxT

N

z′NxT
N 0T −x′NxT

N



h11

h12

h13

h21

h22

h23

h31

h32

h33


The SVD of a matrix A = USVT. The columns of U, u1, u2, . . . , um, and columns of V, v1, v2, . . . , vn are
orthogonal.

If rank(A) = r, then the column vectors of V, vr+1, vr+2, . . . , vn form a basis for the null space of A. If
given the SVD, this fact is useful in solving Ax = 0.

Remember that orthogonal matrix are geometrically either rotation or reflection matrices. Essentially,
the multiplication Ax is (1) first a rotation (or reflection) around the origin by VT; (2) non-uniform
scaling by the values by S and possible change in dimensions; and, finally, (3) rotation (or reflection)
around the origin by U. Note, the determinant of A dictates the scaling of area - if determinant is s, a
unit area would become s after transformation.

Given the constraint ‖ h ‖= 1, atleast 4 corresponding points should be given to solve Ah = 0 and no 3
should be collinear. One way to find Ah = 0, i.e. the nullspace of A, is to find the SVD of A, and take
the last column of V. To explain this we need to look at the SVD. Since S is in the decreasing order of
singular values along the diagonal. Since we are seeking a vector for h which will be multiplied by the
smallest singular value (other than 0), the last column of V would be the perfect fit.

z Invariants are the properties that remain constant under a certain transformation:

# invariants = D.O.F structure − D.O.F transformation

1. Euclidean invariants include length, angles, areas, etc.

2. Similarity invariants include ratio of lengths, angles, ratio of areas, etc.

3. Affine invariants include ratio of length of parallel lines, angles, ratio of areas, etc.

4. Projective invariants cross-ratio, collinearity.

Notice that the list of invariants for a particular transformation includes all the invariants of the transfor-
mations that follow below it. Remember, putting shapes in Canonical frames helps detect shapes/features.

z Vanishing point in perspective projection is the point where different parallel lines meet at different
vanishing points. The line joining all vanishings points (from parallel lines on the same plane) is the
horizon.

Remember, line through focal point maps to a point; plane through focal point maps to a line.
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Types of lens aberrations:

1. Vignetting: darkness around edges due to lens construction.

2. Chromatic aberration: defocussing of some wavelengths.

3. Barrel distortion: decreasing magnification as we move away from the optical axis.

z The distance between the optical center and the principal point is the focal length f . Smaller the
f , larger the field of view:

ŷc = f
Ŷ

Ẑ

Where ŷc is the height on the image plane, Ŷ is the original height, and Ẑ is the distance of the object
from the optical center.

z The Intrinsic matrix K maps camera coordinates to image coordinates xi = Kxc; xc are camera
coordinates; xi are image coordinates:

given K =

fx α ox
0 fy oy
0 0 1


xi = K [I|0]Xcxiyi
zi

 =

 fx α ox 0
0 fy oy 0
0 0 1 0



Xc

Yc
Zc
1


Here the fx, fy are both focal lengths (since the pixel is not square), α is the skew term (used when the
camera plane is not orthogonal to the optical axis); and ox, oy are coordinates for the principal point on
the image plane (lets say, if the image starts from the top left corner).

z The Extrinsic matrix TW→C maps world-coordinates (lets say the obj.s center) to the camera
center coordinates. xi = K [I|0] TW→CXc:xiyi

zi

 =

 fx α ox 0
0 fy oy 0
0 0 1 0



r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1


︸ ︷︷ ︸

TW→C︸ ︷︷ ︸
P the camera matrix


Xc

Yc
Zc
1



The extrinsic matrix TW→C has 6 degrees of freedom (euclidean matrix).

z Compensation for Radial Distortion is usually done in camera coordinates using a polynomial
model.
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z Calibration is the process of estimating the 5 intrinsic, 6 extrinsic, and the 2 radial distortion
parameters. We start with a least square solution and compute a solution which minimizes the image
distance.

z Orthographic projection happens when rays from the scene travel parallel to the optical axis (a
situation common when the object in question is far away):xiyi

1

 =

fx 0 0 ox
0 fy 0 oy
0 0 0 1



Xc

Yc
Zc
1



z When viewing frontoplanar scene at known distance i.e. fixed distance D, the camera matrix
can be simplified to: xiyi

zi

 =

 fx 0 ox 0
0 fy oy 0
0 0 1 0



r11 r12 0 tx
r21 r22 0 ty
0 0 1 0
0 0 0 1



Xc

Yc
D
1


. . . can also be truncated to a smaller 2× 3 matrix.

z When viewing frontoplanar scene at unknown distance i.e. if the focal distance of the camera
is unknown or the distance to the plane is unknown, then the images are also now related to each other
by the unknown scale factor m.

z When viewing tilted planar scene at known distance is approximated with an affine transform
and works only when the object is far away as compared to its size:[

xi
yi

]
=

[
a11 a12 tx
a21 a22 ty

]Xc

Yc
1


Note the affine transform preserves parallelism, but a perspective view of a tilted scene doesn’t - hence
this is not a good approximation.

z For a planar scene with arbitrary camera tilt and pan can be described by a projective
transformation or homography. Since the scene is planar we can say Zc = 0:xiyi

zi

 =

 fx α ox 0
0 fy oy 0
0 0 1 0



r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Xc

Yc
0
1


=

fx α ox
0 fy oy
0 0 1

r11 r12 tx
r21 r22 ty
r31 r32 tz

Xc

Yc
1


=

h11 h12 h13

h21 h22 h23

h31 h32 h33

Xc

Yc
1
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z Two images of any planar scene are related by a homography: H−1
2 H1
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Chapter 2

Two or more Cameras

z Perspective projection converts from 3D to 2D.

z Stereo vision has the problems of calibration i.e. establishing the geometric relationship between
the cameras; correspondence i.e. finding matching points between the images; and reconstruction
i.e. estimating the 3D location of a point.

z Given two cameras C1 and C2, and the transformation relating the first to the second camera, lets
say, T′ = [R|t], we can concentrate on a certain point Xc viewable in both the cameras. Suppose it maps
to a point x in C1 and x′ in C2. Given that Xc lies on line L projecting from C1, we know that x′ in C2

would lie somewhere along the projection of the line L in the second camera, L′. In short, a point in C1,
projects a line L′ in C2 - the exact point itself in C2 would lie on the line L′. The line L′ is know as the
epipolar line. It helps us reduce a 2D search for matching points to a 1D search over a line.

z The epipole is the image of the optical center of the other camera. It can be made by connecting a
line between the two optical centers O and O′ of C1 and C2 respectively. It is also the point where all
epipolar lines intersect. It might not be necessarily in the image plane.

z Given the following information about the two cameras, we need to construct a relationship between
the position of the point x and x′ in the first and second camera respectively:

C1 C2

Image point x x′

Optical center O O′

Intrinsic Matrix K K′

Extrinsic Matrix T = I T′ = [R|t]
Ray vector from Optical center to Xc OXc = k1Rx O′Xc = k2x

′

Also given is the distance between the two optical centers which is exactly the translation in T′: OO′ = t.
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Figure 2.1: The setup for the Essential Matrix formulation.

Since OO′, OXc, and O′Xc are coplanar, they should satisfy the following condition, if these vectors are
transferred to the co-ordinate frame of C2:

O′Xc.(OO′ ×OXc) = 0

x′
T
.(t×Rx) = 0 throwing away the constants k1, k2

x′
T
.

∣∣∣∣∣∣
i j k
tx ty tz

(Rx)x (Rx)y (Rx)z

∣∣∣∣∣∣ = 0

x′
T
.

 0 −tz ty
tz 0 −tx
−ty tx 0

Rx = 0

x′
T
t×Rx = 0

x′
T
Ex = 0 (2.1)

The matrix E gives the relationship between the two points in the image. It is called the Essential
Matrix. Its a 3× 3 matrix; with 6 D.O.F - 3 translational, 3 rotational; and is rank 2.

z The epipolar line l in the first camera, formed by the projection of x′ is given by:

l = x′
T
E

Similarly the epipolar line l′ in the second camera, formed by the projection of x is given by (transpose
the whole Equation 2.1):

l′ = xTET

To find the epipole, we need to find the point which satisfies Equation 2.1 for all epipolar lines. Since it
should solve for all points then:

1. Epipole in C1 e1 = NULL(E)

2. Epipole in C2 e2 = NULL(ET)
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z Fundamental Matrix solves the system in the Essential matrix when the system is uncalibrated i.e.
we don’t know the intrinsic and extrinsic parameters (remember xi = Kxc and x′i = K′x′c). Moving
Equation 2.1 to image coordinates:

x′
T
c Exc = 0

(K′
−1

x′i)
TE(K−1xi) = 0

x′
T
i K′

−T
EK−1xi = 0

x′
T
i Fxi = 0

Where F is the Fundamental matrix, which maps image coordinates in one camera to epipolar lines in
the other camera. F is 3× 3 matrix; rank 2 with 7 independent parametes. It doesn’t have 9 degrees of
freedom since one is sacrificed for scale ambiguity associated with homogeneous representation; and the
other is lost from not being full rank.

z The Eight point algorithm is used to find the Fundamental matrix. It needs atleast 8 points, with
no four points lying on a single plane:

[
x′ y′ 1

] f11 f12 f13

f21 f22 f23

f31 f32 f33

xy
1

 = 0

[
f11xx

′ + f12yx
′ + f13x

′ + f21xy
′ + f22yy

′ + f23y
′ + f31x+ f32y + f33

]
= 0[

xx′ yx′ x′ xy′ yy′ y′ x y 1
]
f = 0 (2.2)

Where f is the vectorized form of F in the row major order. If given atleast eight points, we can stack
them as:

Af =

 x1x
′
1 y1x

′
1 x′1 x1y

′
1 y1y

′
1 y′1 x1 y1 1

...
...

...
...

...
...

...
...

...
xNx

′
N yNx

′
N x′N xNy

′
N yNy

′
N y′N xN yN 1

 f = 0

Using the same technique used in DLT, we can take the SVD of A and pick the last column of V as a
solution for f .

z Problem with the solution for Fundamental Matrix:

1. Usually the solution for F is not a rank 2 matrix, because of errors in the data. This is usually
done by getting back F by setting the last singular value to 0.

2. For a more exact solution the error term should depend on the distance of Xc’s from the epipolar
lines, rather than minimizing the product terms in Equation 2.2.

3. The matrix A is badly scaled.

4. . . . finding atleast 8 corresponding points without knowing the epipolar geometry is hard - yet we
are taking this as a starting point to calculate our epipolar geometry.

z Corrspondence is the problem of finding matching points in a set of images. The features usually
selected for establishing such a correspondence should be tolerant to:
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1. noise

2. changes in illumination

3. uniform scaling

4. rotation

5. minor changes in viewing direction

To make this problem tractable we make the following assumptions:

1. Most scene points are visible in both images

2. Corresponding points have similar neighborhoods

They turn out to be true if the distance of the scene is much greater than the baseline of the stereo
system (distance between the two cameras).

z SIFT - scale invariant feature transform is a method to find robust image keypoints. This is
done by encoding the properties of the neighborhood in a descriptor vector. We can then match points
defining an appropriate distance metric.

It leverages the idea that images have different structures at various different scales:

1. Make a scale space which is simply a stack of images (the original one at the bottom) produced
by iteratively convolving the top-most image in the stack by a fixed Gaussian (blurring) - these
represent structures at increasingly large scales.

2. Since image gradients are more stable features than raw luminance, we take the difference of con-
secutive images in the scale space (DOG - difference of Gaussians):

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

DOG → D(x, y, σ) = G(x, y, σ) ∗G(x, y, σ) ∗ I(x, y)−G(x, y, σ) ∗ I(x, y)

= (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) (2.3)

We can do step 2.3 because both convolution and difference are linear operators.

3. Now find the extrema in DOG space i.e. points larger (or smaller) than 26 neighbors in the DOG
stack.

4. Now we need localize keypoints to subpixel accuracy, which is done by Taylor expansion up to
quadratic terms of the scale space function D(x, y, σ) around the potential keypoint (taking x =
(x, y, σ)):

D(x) = D +
∂DT

∂x
x +

1

2
xT ∂

2D

∂x2
x

where D and its derivatives are evaluated at the keypoint and x is the offset from this keypoint.
Taking the derivative of this function with respect to this offset and setting the resulting expression
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to zero allows us to estimate the position of the keypoint up to sub-pixel accuracy:

0 =
∂DT

∂x
+
∂2D

∂x2
x̂

∂2D
∂x2

∂2D
∂yx

∂2D
∂σx

∂2D
∂yx

∂2D
∂y2

∂2D
∂σy

∂2D
∂σx

∂2D
∂σy

∂2D
∂σ2


︸ ︷︷ ︸

hessian of D(x)

xy
σ

 = −

∂D∂x∂D
∂y
∂D
∂σ



x̂ = −∂
2D−1

∂x2

∂D

∂x

5. Rejection of unstable image structures (like edges instead of corners) by singular values of image
structure tensor H (corner: both high eigenvalues; edge: one large one small; homogeneous: both
small):

H =

[
Dxx Dxy

Dxy Dyy

]
6. Gradients binned by orientation to form a histogram, and orientation of feature is taken as the peak

of the histogram (if more than one peak exists, split into two keypoints with different orientations).
Since the descriptor is computed relative to this orientation, it achieves rotational invariance.

z Now the task comes down to finding the keypoint correspondence. Once SIFT gives us stable feature
points, they need to be characterized by their appearance. This is done by a histogram of image gradients
in a region around a keypoint:

1. Calculate the image gradients around a keypoint, weighted by a gaussian.

2. Pool over a space to form 8 bin orientation histograms in a 4× 4 grid.

3. The values of histograms are concatenated to form a 128 elements feature vector f (8 × 4 × 4).
Normalize to unit length to make them invariant to changes in contrast.

The feature vector f is matched to feature vectors F′ in the other image around a certain region. The
similarity measure is the Euclidean distance between the SIFT descriptors.

z RANSAC - Random sample consensus is a method to fit a model to the data corrupted by
outliers. The algorithm is to do the following steps multiple times:

1. Select a random minimal subset of points (i.e. 2) that defines a line.

2. Fit a line through this subset of points.

3. For all remaining points calculate the squared distance from the fitted line.

4. Divide the points into inliers (close to the line) and outliers (far away).

5. Count the proportion of inliers to outliers.
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The step that results in the highest proportion of inliers is the best set of points which would fit the
model. Now the actual model/line can be estimated by a least squares method using only the inliers.
This can be also be used to estimate the homographies between pairs of points between two images.

z To estimate the Fundamental matrix using RANSAC, for each iteration we will need to choose 8 pairs
of points in the two images. Now a pair would be counted as an inlier if the epipolar line in the second
image, produced by the point in the first image, falls close to the point in the second image (and vice
versa). The random selection of pairs is done from the initial correspondence. Once the best set of inliers
is found, the Fundamental matrix is re-estimated.

z Sparse stereo reconstruction is problem of finding depth of certain feature points, and using them
to reconstruct a scene. As can be seen from Figure 2.1, the point of intersection of OXc and O′Xc would
be the feature’s location is space. Due to noise in the system, these lines might not intersect and we
would need to take the mid-point of the line segment which gives the smallest distance between these
two lines. This is given by:

t+ k2x
′ = k1Rx + k3(Rx× x′)

This is the known case where the intrinsic and extrinsic parameters are known.

In the case we only know the intrinsic parameters, we will first need to estimate the essential matrix
given some correct point matches. Using the estimated essential matrix we will be able estimate the
extrinsic parameters (up to a scaling factor of tx) by breaking E into its constituent parts, E = txR.
This will establish the relationship between the two cameras:

1. E = ULV T

2. tx = ULWUT where W =

0 −1 0
1 0 0
0 0 −1


3. R = UW−1V T

4. in the absence of scaling information, set |tx| = 1

z Image rectification warps the two camera images so that all points on the first line of the first image
have matches on the first scan line of the second image and vice versa (horizontal epipolar lines). Here,
the horizontal difference in projection of the same point in the rectified image is called the disparity.

Polar rectification is done by polar parameterization around the epipole: x-axis in the polar rectified
image gives the distance from the epipole and y-axis gives the angle from the epipole.

13



Chapter 3

Probability, Learning and Inference

z Random VariableX denotes an uncertainty in an event. Probability distribution Pr(X) captures
that uncertainty. Both discrete (e.g. roll of a dice), and continuous (e.g. time to finish a 2 hours exam)
random variables exist. Both exist in finite (e.g. roll of a dice) and infinite (e.g. velocity of a car if we
ignore nothing travels faster than speed of light) flavors. In case of a discrete random variable, sum of all
probabilities should be 1:

∑
Pr(X) = 1. In case of a continuous random variable, it is visualized using

a probability density function/PDF (which shows the relative propensity of X to take a ceratin value)
whose integral is 1:

∫
Pr(X)dX = 1.

z Hinton diagrams are used to represent distributions of discrete random variables using squares of
different sizes indicating their relative probability.

z When considering multiple random variables, X1, X2, . . . , Xn, we can consider their joint probability
distribution: Pr(X1, X2, . . . , Xn), which is read as “the probability of X1X, 2, . . . , and Xn”. Note that
these random variables can be a mixture of continuous and discrete. Regardless, the total probability
distribution by summing over the discrete random variables, and integrating over the continuous ones
should be 1: ∑

Xn

· · ·
∑
Xa+2

∑
Xa+1

(∫
. . .

∫ ∫
Pr(X1, X2, . . . , Xn) dX1dX2 . . . dXa

)
= 1

where the continuous random variables are from 1 to a and discrete ones are from a+ 1 to n.

z Given a joint probability distribution, Marginalization is the process of recovering the (joint) proba-
bility distribution of a subset of those random variables. The recovered probability distribution is called
the Marginal Distribution. For example we can recover the marginal distribution Pr(X) from the
joint distribution Pr(X,Y ) by marginalizing over the random variable Y i.e. the probability distribution
of X when we ignore Y :

Pr(X,Y ) =
∑
W

(∫
Pr(X,Y,W,Z) dZ

)
if W was a discrete random variable, and Z was a continuous one.
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z The Conditional probability in a joint distribution is the relative probability of, let’s say, X if Y
is fixed to y∗. It is written as Pr(X|Y = y∗) and read as “the probability of X given Y = y∗”.

It is computed by normalizing the probability distribution of a certain slice of the joint distribution:

Pr(X|Y = y∗) =
Pr of X and Y = y∗

total Pr when Y = y∗

=
Pr(X,Y = y∗)∫

Pr(X,Y = y∗)dX
=

Pr(X,Y = y∗)

Pr(Y = y∗)

Pr(X|Y ) =
Pr(X,Y )

Pr(Y )
this is an alternate form of writing the eq. above

An important corollary of this formula is that in case of more than two variables, we may repeatedly take
conditional probabilities to divide up the joint probability distribution into a product of terms:

Pr(W,X, Y, Z = z∗) = Pr(W,X, Y |Z) Pr(Z)

= Pr(W,X|Y,Z) Pr(Y |Z) Pr(Z)

= Pr(W |X,Y, Z) Pr(X|Y, Z) Pr(Y |Z) Pr(Z)

z The idea of Independence between random variables states that a certain random variable X tells
us nothing about Y - they are completely un-correlated. This will be evident when we compute the
conditional probability, let’s say, of X given that Y = y∗, and find that it remains the same regardless of
the values of y∗:

Pr(X|Y ) = Pr(X)

Pr(Y |X) = Pr(Y )

moreover, Pr(X,Y ) = Pr(X|Y ) Pr(Y )

= Pr(X) Pr(Y )

z Using:
Pr(X,Y ) = Pr(Y |X) Pr(X) = Pr(X|Y ) Pr(Y )

the Bayes’ rule refers to these steps:

Pr(Y |X) Pr(X) = Pr(X|Y ) Pr(Y )

Pr(Y |X) =
Pr(X|Y ) Pr(Y )

Pr(X)
(3.1)

=
Pr(X|Y ) Pr(Y )∫

Pr(X,Y )dY
using marginalization (3.2)

=
Pr(X|Y ) Pr(Y )∫
Pr(X|Y ) Pr(Y )dY

using conditional probability (3.3)
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The steps in Equation 3.1 to 3.3 are known as the Bayes rule.

The terms are named as: Pr(Y |X) is the Posterior probability; Pr(X|Y ) is the Likelihood ; Pr(Y ) is
the Prior (what we know about Y before knowing X); and Pr(X) is the Evidence.

z The problems in Vision using the learning approach usually want to infer the state of the world
y∗ given some visual data x∗. When the state of the world, y∗ is continuous, we call this inference
Regression. When it is discrete we call this Classification.

z A certain visual data x∗ is still ambiguous to convincingly define state y∗. Hence we work with
Pr(y∗|x∗), that is the probability distribution of the state after observing the visual data. The prior
here, Pr(y∗) indicates that some states are observed more than others. This process of observing the
data and refining our understanding about the state from the prior to the posterior probability is called
Inference .

z A posterior function takes x∗ as the input and returns Pr(y∗|x∗), the posterior distribution as the
output. Remember, the posterior function is not a probability function.

z Approaches to inference (in all images, each row belongs to a particular state y∗, and each column
belong to a particular visual data x∗):

1. The Discriminative approach directly models the posterior function Pr(y∗|x∗). Given the visual
data x∗ it directly outputs Pr(y∗|x∗). In this model the columns of the image are probability
distributions and sum to one.

2. The Generative joint approach models the joint distribution Pr(y∗,x∗). Given the visual data
x∗ it computes the posterior using Bayes’ rule:

Pr(y∗|x∗) =
Pr(y∗,x∗)

Pr(x∗)

Here the entire image Pr(y∗,x∗), of course, is a PDF. We create the posterior function indirectly
by normalizing the columns of this joint distribution.

3. The Generative likelihood approach models the likelihood distribution Pr(x∗|y∗) and the prior
distribution Pr(y∗). Now given the visual data x∗, it computes the posterior:

Pr(y∗|x∗) =
Pr(x∗|y∗) Pr(y∗)

Pr(x∗)

In this model each row in the image of Pr(x∗|y∗) sums to 1. The posterior is generated by weighting
the rows by the prior and then normalizing columns.

Note that in case of classification we can model the class conditional likelihoods, Pr(x∗|y∗ = k)
for each class separately

z Regardless of the inference approach adopted, in Learning we estimate the posterior function over the
parameters θ. Estimating these parameters is known as Learning. The shape of the posterior function
will change with the choice of parameters θ.
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z The estimation is of θ is done using training data X,Y. Since this training data might not be enough,
the best way to estimate a posterior distribution Pr(θ|X,Y) over the parameters θ given the training
data. In other words, in the Bayesian approach, we treat the model parameters θ as random variables
that are themselves uncertain:

1. Discriminative:

Pr(θ|X,Y) =
Pr(Y|X, θ) Pr(θ)

Pr(Y|X)

2. Generative joint:

Pr(θ|X,Y) =
Pr(Y,X|θ) Pr(θ)

Pr(X,Y)

3. Generative likelihood:

Pr(θ|X,Y) =
Pr(X|Y, θ) Pr(θ)

Pr(X|Y)

z Since each set of parameter θ will give a different posterior function, the Bayesian approach advo-
cates marginalizing over all possible settings for the parameters θ:

1. Discriminative:

Pr(y∗|x∗,X,Y) =

∫
Pr(y∗|x∗, θ) Pr(θ|X,Y)dθ

2. Generative joint:

Pr(y∗,x∗|X,Y) =

∫
Pr(y∗,x∗|θ) Pr(θ|X,Y)dθ

3. Generative likelihood:

Pr(x∗|y∗,X,Y) =

∫
Pr(x∗|y∗, θ) Pr(θ|X,Y)dθ

z Sometimes the Bayesian approach might be intractable, because the resulting equation might not be
in closed form. Rather than integrating over all parameters, we can select the most probable parameters
θ̂ = arg maxθ Pr(θ|X,Y). The distributions over the chosen parameters is now:

Pr(y∗|x∗,X,Y, θ̂) Discriminative

Pr(y∗,x∗|X,Y, θ̂) Generative joint

Pr(x∗|y∗,X,Y, θ̂) Generative likelihood

This is the Maximum a posteriori (MAP) estimation of θ.
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Common Probability Distributions

z The common probability distributions:

Distributions to describe Domain Distributions to model
data and world state x∗,y∗ uncertainty in Parameters θ

Bernoulli z ∈ {0, 1} Beta
Categorical z ∈ {1, 2, . . . ,K} Dirichlet

Univariate normal z ∈ R Normal inverse gamma
Multivariate normal z ∈ R+ Normal inverse Wishart

z Bernoulli distribution is a discrete distribution that models binary trials y ∈ {0, 1} (1 is for success
usually). Plus λ ∈ [0, 1]:

Pr(y) = λy(1− λ)1−y = Berny[λ]

It could be used to model data where pixels are thresholded, and states such as a binary classifier.

z The Beta distribution is defined on λ ∈ [0, 1] and has parameters (α, β) ∈ [0,∞) whose relative values
determine the expectation E[λ] = α/(α+ β). As the absolute values of (α, β) increase the concentration
around E[λ] increases:

Pr(λ) =
Γ(α+ β)

Γ(α)Γ(β)
λα−1(1− λ)β−1 = Betaλ[α, β]

z The Categorical distribution is a discrete distribution that determines the probability of observing
one of K possible outcomes (Bernoulli is just a special case of this). This is useful when pixel data is
banded into discrete levels, or we are dealing with a K-way classifier:

Pr(y = k) = λk = Caty[λ1, λ2, . . . , λK ]

where
∑K
k=1 λk = 1.

z The Dirichlet distribution is defined over K continuous values λ1, . . . , λK , following the rules in the
Categorical distribution. It is defined using K parameters α1, . . . , αK which can take positive values
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(their relative values define expectations: E[λ1], . . . , E[λk]):

Pr(λ1, . . . , λK) =
Γ[
∑K
k=1 αk]∏K

k=1 Γ[αk]

K∏
k=1

λαk−1
k = Dirλ1...K

[α1, α2, . . . , αK ]

The absolute values determine the concentration: the distribution is highly peaked around the expected
value E[λk] at high parameter values αk.

z The Univariate Normal distribution (Gaussian) is defined over continuous values x ∈ [−∞,∞]. It
is defined using 2 parameters mean µ (determines the position of the peak), and variance σ2 (determines
width of the distribution):

Pr(x) =
1√

2πσ2
exp(−0.5(x− µ)2/σ2) = Normx[µ, σ2]

By ignoring the fact that pixels can only take discrete values, the normal distribution can be used to
describe visual data. Similarly they can be used to describe the state.

z The Normal Inverse Gamma distribution is defined over µ ∈ R and σ2 ≥ 0, following the rules
in the Univariate Normal distribution. It is defined using α, β, γ > 0, and δ ∈ R parameters (varying
α, β changes the spread of the distribution; γ defines the narrowness; and δ shifts the distribution left or
right):

Pr(µ, σ2) =

√
γ

σ
√

2π

βα

Γ(α)

( 1

σ2

)α+1

exp
[
− 2β + γ(δ − µ)2

2σ2

]
= NorSIGµ,σ2 [α, β, γ, δ]

z The Multivariate Normal distribution (Gaussian) is defined over a vector of K values x where each
x ∈ [−∞,∞] (Univariate Normal is a special case of this distribution). It is defined using 2 parameters:
mean µ is K × 1 vector (determines the position of the peak in RK space), and variance Σ is a K ×K
symmetric positive definite matrix (determines width against each variable):

Pr(x) =
1

(2π)K/2|Σ|1/2
exp

[
− 0.5(x− µ)TΣ−1(x− µ)

]
= Normx[µ,Σ]

This distribution can be used to describe a joint distribution, of let us say, intensities of K pixels within
a certain region of an image. Important properties of this distribution:

1. When K = 2, Σ can take the following forms:

Σspher =

[
σ2 0
0 σ2

]
Σdiag =

[
σ2

1 0
0 σ2

2

]
︸ ︷︷ ︸

here the two variables are independent

Σfull =

[
σ2

1 σ2
12

σ2
12 σ2

2

]

Σspher produces hyper-spherical (circular) distributions; Σdiag gives hyper-ellipsoid (elliptical); and
Σfull gives rotated hyper-ellipsoid.

2. For the Σfull, we can decompose the matrix by considering that they are simple rotations of Σdiag.
By taking the transformation x′ = Rx, we deduce: Σfull = RΣ′diagR

T.
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This can also be thought as the eigenvalue decomposition of the matrix Σfull (Σfull = UΣ′diagU
T).

The matrix U contains unit-length, orthogonal eigenvectors, and the matrix Σ′diag is a diagonal
matrix containing the associated eigenvalues. The rotation U just allows us to make the variables
independent. This decomposition of the covariance matrix is known as Principal Component
Analysis, where we only keep a k largest diagonal values from Σ′diag.

3. The multivariate normal distribution is preserved under linear transformations y = Ax + b:

Pr(x) = Normx[µ, Σ] → Pr(y) = Normy[Aµ + b, AΣAT]

4. If we marginalize over any subset of random variables in a multivariate normal distribution, the
remaining distribution is also normally distributed. To find the mean and covariance of the marginal
distribution of any subset of variables, one can simply extract the relevant entries from µ,Σ.

5. The conditional distribution is also distributed as a multivariate normal; it is computed as:

Pr(x1|x2) = Normx1 [µ1 + ΣT
12Σ

−1
22 (x2 − µ2),Σ11 −ΣT

12Σ
−1
22 Σ12]

Remember Σspher,Σdiag are for independent variables, hence their conditional distribution doesn’t
change.

z The Normal Inverse Wishart distribution is defined over µ,Σ and σ2 ≥ 0, following the rules in
the Multivariate Normal distribution. It is defined using α > 0 (controls the dispersion of covariances),
Ψ is a K ×K positive-definite matrix (controls the average covariance), γ > 0 (controls the dispersion
of mean vectors), and δ is a K × 1 vector (controls the average values of the mean vectors):

Pr(µ,Σ) =
Ψα/2|Σ|(α+K+2)/2 exp

[
− 0.5

(
2Tr(ΨΣ−1)− γ(µ− δ)TΣ−1(µ− δ)

)]
2αd/22πd/2Γ(α/2)

= NorIWisµ,Σ[α,Ψ, γ, δ]

this gives positive values for any valid µ,Σ, such that if we integrate over all possible values of µ and Σ
it will give 1.

z The table 4 gives related distributions. The distribution on the rightmost column is the conjugate of
the respective distribution on the left e.g. Beta is the conjugate distribution to Bernoulli.

The product of the distribution with its conjugate comes out in the form of the conjugate.

z Lets say we are given to learn the parameters for the generative joint model of inference:

Pr(θ|X,Y) =
Pr(Y,X|θ) Pr(θ)

Pr(X,Y)

Now if the prior Pr(θ) is a conjugate of the likelihood term Pr(Y,X|θ), then the posterior Pr(θ|X,Y)
will also have the conjugate form. The multiplicative constant (that comes out of multiplying a function
with its conjugate) will get canceled with the evidence term Pr(X,Y). This whole process will make it
easier to get a closed form expression for the posterior.
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Similarly, when we marginalize the result above over all the parameters we have:

Pr(y∗,x∗|X,Y) =

∫
Pr(y∗,x∗|θ) Pr(θ|X,Y)dθ

Here too, if the learned distribution over the parameters Pr(θ|X,Y) has a form that is conjugate to the
term Pr(y∗,x∗|θ); then the solution to the integral will simply be the constant term (which results from
the multiplication of a function with its conjugate) κ. This is known as exact inference.
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Inference at a Single Pixel

z Aim is to classify each pixel into one of the K classes. Examples:

1. Chroma-keying: Used in compositing - assign binary label to indicate if pixel belongs to the
bright-colored background or the foreground object.

2. Background subtraction: Assign pixels as being background or foreground (and its shadows).

3. Skin segmentation

4. Scene understanding: Assign pixels to one of the K classes each for a certain object.

Skin pixel data can be best viewed with this transformation x = 0.5xr − 0.4187xg − 0.0813xb.

z For example, in skin segmentation we are looking for a binary classification from the above mentioned
transformation, i.e. f : x ∈ [0, 1] → y∗ ∈ {0, 1}. If we discretize the input pixel data, we can have
something like f : x ∈ {1, . . . ,K} → y∗ ∈ {0, 1}, where K are the number of discretization bins.

z In both of the above cases, choosing a classification model has far-reaching implications. Some choices
will allow us to do exact inference (marginalizing over all parameters) using the Bayesian approach. In
other cases we have to settle for MAP

z One advantage of using the Generative Likelihood approach over Discriminative approach is that
adding new classes (world state) to the former is extremely simple (since we model each class separately
anyways). Plus when adding new classes, we don’t need to relearn the likelihood of the previous ones.
Contrary to the generative approach, it is quite tedious to add new classes when using a discriminative
approach.

z For generative approach we model the class-conditional data for each class (world state) separately.
Problems occur when the input data is in large dimensional space / not all of the density function might
be relevant in making the distinction between the classes. In contrast, disriminative models actually try
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to refine the boundary between the classes and devote more time where the discrimination is a hard
problem.

5.1 Generative Likelihood Approach

z Supposing the prior Pr(y∗) is known.

1. Model Specification - Choose a mathematical model for the likelihood Pr(x|y = m,θm) for each
world state m. Usually the same distribution model is chosen for all states. Also, distributions are
chosen for parameters associated with each world state, Pr(θm).

2. Learn the Model - This stage learns over the parameters θm, for each world state of y = m. The
result of this step would be a tighter estimate of the likelihood, either by taking a weighted sum
over all the parameters (Bayesian approach) or by simply choosing the likelihood from the best set
of parameters (MAP approach):

(a) Bayesian Approach - Using Bayes’ Rule we learn a distribution Pr(θm|X,Y = m). This is
done by taking a subset of the training data S where we know the state is m:

Pr(θm|X,Y = m) =

∏
i∈S Pr(xi|θm) Pr(θm)∏

i∈S Pr(xi)

The likelihood for this state (y = m) is found by marginalizing over all θm:

Pr(x∗|y∗ = m) =

∫
Pr(x∗|y∗ = m,θm) Pr(θm|X,Y = m)dθm

(b) MAP Approach - For each world state, we find the values for the parameters θm that maximize
the posterior:

θ̂m = arg max
θm

Pr(θm|X,Y = m)

Giving us the likelihood for state m as Pr(x∗|y∗ = m,θm)

3. Inference - Calculate the posterior for each world state m using Bayes’ Rule:

Pr(y∗ = m|x∗) =
Pr(x∗|y∗ = m) Pr(y∗ = m)

Pr(x∗)

Note that the denominator is simply the sum of the products of the likelihood and the prior for all
the world states:

Pr(x∗) =

M∑
m=1

Pr(x∗|y∗ = m) Pr(y∗ = m)
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5.1.1 Discrete data

z Taking the skin classification example, model the likelihoods Pr(x|y = 0) (non-skin) and Pr(x|y = 1)
(skin) with binning x ∈ {1 . . . 20}). We then indirectly infer the posterior Pr(y∗|x∗) over any given colour
value x∗. The prior probability is Pr(y = 1) = 0.2

1. Model Specification - Use two categorical distributions to model the skin and non-skin likelihoods.
The two respective parameters λm are modelled each with a Dirichlet distribution (the parameters
for the dirichlet are set to αk = 1 for all k to give a uniform prior to the parameters).

2. Learn the Model - Do for both skin and non-skin data (m ∈ {0, 1}):

(a) Bayesian Approach - Using Bayes’ Rule we get:

Pr(λm|X,Y = m) = Dirλm
[N1 + α1, . . . , N20 + α20]

where Nk is the number of trials where we observed the k’th quantized value. The likelihood
for both states (m ∈ {0, 1}) come out in this form:

Pr(x∗ = k|y∗ = m) =
Nk + αk∑20
j=1(Nj + αj)

(b) MAP Approach - The following parameters maximize the posterior:

Pr(x∗ = k|y∗ = m) = λ̂k,m =
Nk + αk − 1∑K

j=1(Nj + αj)−K

where K = 20.

3. Inference - Compute the posterior as prescribed in 5.1.

5.1.2 Continuous data

z Taking the skin classification example, model the likelihoods Pr(x|y = 0) and Pr(x|y = 1) supposing
x is now continuous). We then indirectly infer the posterior Pr(y∗|x∗) over any given colour value x∗.

1. Model Specification - Use two univariate normal distributions to model the skin and non-skin
likelihoods. The two respective parameters are modeled each with a normal inverse gamma dis-
tribution (the parameters for the NorSIG are set to α = β = γ = 1 and δ = 0 allowing for wide
variety of means and variances).

2. Learn the Model - Do for both skin and non-skin data (m ∈ {0, 1}):

(a) Bayesian Approach - Using Bayes’ Rule we get:

Pr(µm,σ
2
m|X,Y = m) = NorSIGµm,σ

2
m

[α̃, β̃, γ̃, δ̃]
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where α̃, β̃, γ̃, δ̃ are decided by the conjugate relationship between Normx and NorSIG. Marginal-
izing over both µm,σ

2
m, the likelihood for both states (m ∈ {0, 1}) comes out in this form:

Pr(x∗ = k|y∗ = m) =
1√
2π

√
γ̃β̃α̃Γ[ᾰ]
√
γ̆β̆ᾰΓ[α̃]

where ᾰ, β̆, γ̆, δ̆ are again decided by the conjugate relationship.

(b) MAP Approach - The following parameters maximize the posterior:

µ̂m = δ̃, σ̂2
m =

β̃

α̃+ 3/2

3. Inference - Compute the posterior as prescribed in 5.1.

z In case our input data is not a scalar value (data in R), rather 3 RGB values (data in R3), we can model
the likelihood by: (1) if we discretize into 20 bins (a) as a product of the categorical distributions for
each colour channel (supposes independence in the 3 channels), (b) model a single categorical distribution
with 203 parameters (needs too much data for training); (2) if we consider data is continuous, model the
likelihood by: (1) product of 3 univariate normals (supposes independence); (3) by using a multivariate
normal distribution (which would have 6 parameters for covariance and 3 for mean).

5.2 Discriminative Approach

z Need to model the posterior directly Pr(y∗|x∗ = k) i.e. to give a distribution of the world state for
every possible k.

1. Define Posterior distribution - Choose a model for the world state y∗ with distribution param-
eters Θ, Pr(y∗|Θ) (for example, if the world state is continuous R we can use a univariate normal
distribution with Θ = {µ, σ2}).

2. Define Posterior function - To make the posterior function, we first need to define the distribution
parameters as a function of the input data x∗, Θ(x∗,θ). The function parameters θ modulate the
effect of x∗ on Θ. So the posterior function can be written either as Pr(y∗|Θ(x∗,θ)) or Pr(y∗|x∗,θ).
Also we define a prior distribution for each function parameter Pr(θ).

3. Learn Posterior function parameters θ - Here we find a probability distribution over each
possible function parameter (and hence possible functions):

(a) Bayesian Approach - Using Bayes’ Rule we learn a distribution Pr(θ|X,Y) (assuming I inde-
pendent training examples):

Pr(θ|X,Y) =

∏I
i=1 Pr(yi|xi,θ) Pr(θ)

Pr(Y)
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(b) MAP Approach - We simply seek the most probable set of parameters:

θ̂ = arg max
θ

Pr(θ|X,Y)

4. Inference - In this step we finally get the posterior function (you need to follow the same approach
you followed in the previous step):

(a) Bayesian Approach - Marginalize over all parameters:

Pr(y∗|x∗) =

∫
Pr(y∗|x∗,θ) Pr(θ|X,Y)dθ

(b) MAP Approach - Use the MAP parameters θ̂ to get the posterior function, Pr(y∗|x∗, θ̂).

5.2.1 Discrete data

z Taking the skin classification example, directly model the posterior Pr(y∗ = m|x∗) (i.e. two posterior
distributions) having seen training data with K possible values (binning). Eventually we get a Bernoulli
distribution Pr(y∗|x∗ = k) which gives the distribution for each input state k ∈ {1, . . . ,K}.

1. Define Posterior distribution - Use Bernouilli distribution because the world state is binary:

Pr(y∗|λ) = Berny∗ [λ]

2. Define Posterior function - Since the data values have K options, there will be K parameters
λk, each giving a different bernoulli distribution:

Pr(y∗|x∗, λ1,...,K) = Berny∗

[
K∏
k=1

λ
x∗k
k

]
Each of these λk function parameters will be associated with a prior distribution:

Pr(λk) = Betaλk
[α, β]

Note that we use the same α and β for all prior distributions.

3. Learn Posterior function parameters θ - Using the training data X,Y, we learn the parameters
λ1,...,K :

(a) Bayesian Approach - Using only a subset of the training data Sk where we know that the data
belonged to the k’th bin:

Pr(λk|X,Y) =

∏
i∈Sk Pr(yi|xi, λk) Pr(λk)

Pr(Y)

= Betaλk
[α̃k, β̃k]

where α̃k = α+Nk, β̃k = β+Mk, where the Nk is the number of skin training examples when
x = k, and Mk is the number of non-skin training examples when x = k
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(b) MAP Approach - The most probable parameter for each bin k comes out to be:

λ̂k = arg max
λk

Pr(λk|X,Y) =
α̃k − 1

α̃k + β̃k − 2

4. Inference - In this step we finally get the posterior function:

(a) Bayesian Approach - Marginalizing over all parameters:

Pr(y∗|x∗ = k) =

∫
Pr(y∗|x∗ = k, λk) Pr(λk|X,Y)dλk

= Berny∗

[
α̃k

α̃k + β̃k

]

(b) MAP Approach - Using the MAP parameters λ̂k, we get the following posterior:

Pr(y∗|x∗ = k, λ̂k) = Berny∗

[
α̃k − 1

α̃k + β̃k − 2

]

5.2.2 Continuous data

z Taking the skin classification example, directly model the posterior Pr(y∗|x∗) with a Bernoulli distri-
bution where the parameters for the distribution changes continuously with the values of x∗. This model
is called logistic regression:

1. Define Posterior distribution - Use Bernoulli distribution because the world state is binary
(remember only a single parameter λ is required):

Pr(y∗|λ) = Berny∗ [λ]

2. Define Posterior function - To make the parameter λ dependent on the input data x∗, we use
a linear function a(x∗) = w0 +w1x

∗ (this step is called Activation). To constrain the values that
a can take from a ∈ [−∞,∞] to λ ∈ [0, 1], we use a logistic sigmoid function:

λ =
1

1 + exp(−a)

This helps us build a distribution over any world state:

Pr(y∗|x∗, w0, w1) = Berny∗

[
1

1 + exp(−(w0 + w1x∗))

]
Since there is no conjugate prior which directly relates to λ, we use:

Pr(w0, w1) = Normw0 [0, σ2
0 ]Normw1 [0, σ2

1 ]
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3. Learn Posterior function parameters θ - Using the training data X,Y, we learn the parameters
w0, w1:

(a) Bayesian Approach - The function used to learn a distribution Pr(w0, w1|X,Y) over the pa-
rameters, doesn’t have a closed form because we didn’t have a conjugate prior. This causes
problems in using the Bayesian Approach.

(b) MAP Approach - The expression for the most probable parameters:

ŵ0, ŵ1 = arg max
w0,w1

Pr(w0, w1|X,Y)

also don’t have a closed form. Use gradient descent for this nonlinear optimization: (1) select
a sensible direction in the parameter space and move in the direction of the gradient, (2)
iteratively improve results.

4. Inference - In this step we finally get the posterior function:

(a) Bayesian Approach - The function to marginalize over both parameters doesn’t have a closed
form.

(b) MAP Approach - Using the MAP parameters ŵ0, ŵ1, we get the following posterior:

Pr(y∗|x∗, ŵ0, ŵ1) = Berny∗

[
1

1 + exp(−(ŵ0 + ŵ1x∗))

]

z If the world states y∗ we are looking are multidimensional (rather than binary in case of skin classifi-
cation), then model is called multiclass logistic regression. The posterior distribution is modeled as
a categorical distribution. Here we will have one Activation for each of the K classes/world states. To
constrain the values ak can take, we use a softmax function, which is sort of the multiclass variant of
the logistic sigmoid function. The problems in multiclass logistic regression are that we cannot treat the
dimensions as independent, but when we build a joint distribution over them, there can be an explosion
of parameters.

z Bayesian approach is more preferable to MAP approach when the amount of training data available is
less relative to the number of model parameters - here the Bayesian approach will build a posterior which
take this uncertainty into account. When the training dataset is large both methods have little difference.
Although, MAP makes over-confident assumptions, because it takes hard estimates on parameters, which
in a proper formulation should be treated as uncertain. On the other hand, Bayesian estimation gives
us flatter posteriors. Moreover, in case some data value didn’t occur in the training set, the posterior
probability wouldn’t be defined in MAP (Bayes’ Rule gives zero divided by zero); as compared to Bayesian
approach which will assign some small probability even to unseen data.

z The Receiver Operator Characteristic (ROC) is a graph of true positives against false positives.
By thresholding the resulting posterior functions at different probabilities, we can get different set of
performance values. This allows us to build a whole curve. The more the curve is toward the top left
corner, the more perfect the performance of the algorithm is. The area under the curve A ∈ [0, 1] is a
good metric for judging the performance.

With smaller training sets, Bayesian approach is usually superior to MAP (has more area under the
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curve); and with larger training sets, the performance given by both is similar. The lag of MAP catching
up to the Bayesian approach is lesser in continuous input data cases.
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Chapter 6

Markov Random Fields, MCMC,
and Graph Cuts

z The aim is to establish relationship between the labels of adjacent regions, rather than looking at them
individually which creates noisy results. The right step in this direction is to express the relationship in a
neighborhood using a prior Pr(l) over labellings l = {l1, . . . , lp} for the whole image of p pixels. This can
enforce smoothing. But the problem is that we are forced to calculate the posterior probability Pr(l|X)
of all of the labels at once given the image data X = {x1, . . . , xp} (the joint probability of all of the labels
is high-dimensional).

6.1 Dense Stereo Matching

z Dense stereo matching problem for each pixel in the rectified image Ix, find the corresponding pixel in
Iy. We take the generative approach: finding the unknown/hidden label l at each image pixel Ix, which
represents the value of the disparity (offset in the horizontal direction); taking l as a discrete random
variable for representing integer pixel values.

z To make the problem realistic, we describe the dependency of x on l Pr(x|l) with Gaussian noise on
the offset pixel y’s intensity value. Then the likelihood that the observed image data xi,j is described by
the disparity li,j of k pixels:

Pr(xi,j |y, li,j = k, σ2) = Gxi,j
[yi,j+k, σ

2]

The prior on the hidden labels/disparity is given by (where K is the largest acceptable disparity):

Pr(li,j = k) =

{
1

K+1 if 0 ≤ k ≤ K
0 otherwise
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Figure 6.1: Graphical model showing relationship between the ob-
served image pixel xi,j and hidden disparity label li,j . The thing
to note is the connection between the labels: (a) In the Markov
chain model smoothing occurs across the scan lines and is solved
by dynamic programming ; (b) in the Markov tree model smooth-
ing occurs across links which form a tree and is solved by dynamic
programming over a tree; (c) in a Markov Random Field all la-
bel nodes are connected to its neighbors and is solved by Gibbs
sampling or Graph cuts.

Figure 6.2: Graph setup in (c)
such that the min-cut is the
MAP estimation in a binary
MRF (two labels). (a) and (b)
show unary and binary costs re-
spectively. The t-links to sink
takes unary cost α and links to
source takes γ. The n-links have
the cost β for choosing a different
label in the neighborhood. (d)
shows the final segmentation.

We can invert the links of the graphical model (see Figure 6.1) and find the posterior distribution over
the label values li,j = k at pixel (i, j) using Bayes’ Rule:

Pr(li,j = k|xi,j ,y, σ2) =
Pr(xi,j |y, li,j = k, σ2) Pr(li,j = k)∑K

m=1 Pr(xi,j |y, li,j = m,σ2) Pr(li,j = m)

Essentially we are assuming solution for each pixel is completely independent. Using this we take the
MAP solution.

z We want a smoothness constraint over the field of hidden labels, so that neighboring labels tend to
similar values. In each developed model, we compute the MAP solution:

l
(MAP)
i = arg max

li
Pr(xi|y, σ2, li) Pr(li)

6.2 Markov chain (Dynamic Programming)

z Here we consider each scan-line as a separate problem - and the crucial characteristic that lets us
solve this problem is that this graph formulation has no loops. The likelihood term remains the same
as before, although the prior changes. We now treat the scan-line as chain of pixels where the prior for
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seeing the disparity label li,j is dependent on the label li,j−1:

Pr(li,j = k|li,j−1 = m) =


c1 if k = m

c2 if |k −m| = 1

c3 otherwise

where c1 ≥ c2 ≥ c3. Figure 6.1 (a) shows the graphical model. Now the solution is to use Bayes’ Rule to
establish the posterior over the hidden/unknown labels:

Pr(li|xi,y, σ2) =
Pr(xi|y, σ2, li) Pr(li)

Pr(xi)
=

(∏J
j=1 Pr(xi,j |y, σ2, li,j)

)
Pr(li)

Pr(xi)

where J are the number of pixels on a scan-line. Note that we can break down the likelihood since all
observations are independent. Now what about the prior. We mentioned above that adjacent pixels are
related by a cost, hence:

Pr(li) = Pr(li,1)× Pr(li,2|li,1)× Pr(li,3|li,2) . . .Pr(li,J |li,J−1) = Pr(li,1)

J∏
j=2

Pr(li,j |li,j−1)

this is exactly what a Markov chain is (having the Markov property) - i.e. the hidden label of a
particular pixel only depends on its immediate neighbor.

z We aim to find the MAP labeling through a dynamic programming approach:

l
(MAP)
i = arg max

li
Pr(xi|y, σ2, li) Pr(li)

= arg max
li

 J∏
j=1

Pr(xi,j |y, σ2, li,j)

  J∏
j=2

Pr(li,j |li,j−1)

 Pr(li,1)

l
(MAP)
i = arg min

li

J∑
j=1

Aj︸ ︷︷ ︸
node costs

+

J∑
j=2

Bj,j−1︸ ︷︷ ︸
link costs

+ B1︸︷︷︸
constant

where in the last equation Aj = − log Pr(xi,j |y, σ2, li,j) and Bj,j−1 = − log Pr(li,j |li,j−1). This last
equation is just the conversion of the problem to a negative log minimization (remember the log is a
monotonic transformation and location of extremas don’t change).

z Now using the Viterbi algorithm (dynamic programming/max-product algorithm), get the MAP
solution. The minimum cost path would correspond to the MAP disparity for a scan-line. Smoothing
across a scan-line can be increased by increasing c1 as compared to c2 and c3. Lowering this c1 is
equivalent to enforcing independent pixel solutions.

6.3 Markov tree (Dynamic Programming on a tree)

z It should be noted that these dynamic programming approaches can be used whenever there are no
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loops in a graph. Veksler (CVPR ’05) proposed starting with a fully connected graph (as given in Figure
6.1 (c)) and pruning links until there are no loops (as given in Figure 6.1 (b)). Pruning is done wherever it
is thought that the disparity map shouldn’t be smooth anyways - i.e. pixels with large intensity changes
are good candidates for such pruning.

6.4 Markov Random Fields

z A Markov Random Field (MRF ) defines the prior probability distribution (the Pr(li) term) over a
set of hidden random variables l. A MRF is determined by three aspects:

1. A set of site S = {S1 . . . SP } (pixels).

2. A set of random variables L = {l1 . . . lP } associated with each of the P sites.

3. A set of neighbors N1...P for each of the P sites. They define the extent of the probabilistic
connections between sites.

z For our problem the hidden labels can only take one of the 2 labels (i.e. we will form a binary MRF).
If there are P pixels, the total number of possible configurations would be 2P . The goal is to specify a
probability distribution over these 2P states - we can incorporate our understanding of images into the
probability distribution or simply use a training set.

z To be a Markov Random Field, it should obey the Markov property :

Pr(li|lS\i) = Pr(li|lNi) ∀i ∈ S

i.e. only labels in a small distance of each other will have a direct probabilistic relationship. We will
define our neighborhood to be the 4 connected pixels to each site. This prior will be set such that fields
of labels that are smooth would tend to have a higher probability.

z The key thought here is the Hammersley-Clifford theorem. It states that any system that follows
the above mentioned Markov property for an MRF, can be written as a Gibbs’ distribution:

Pr(l =
1

Z
exp

[
− 1

T
U(l)

]
where Z is the partition function/normalization constant (an unknowable quantity), T is the temperature
(usually set to T = 1), and U is the cost of the MRF. Also note as U increases, the probability decreases.

U(l) is essentially the sum of clique potentials, which are, effectively, costs:

U(I) =
∑
c∈C

Vc(l)

As clique potential increases, the probability decreases. There is one clique potential for every maximal
clique C in the graph. Hence, the hidden variable l22 would contribute to the cliques C22

12 , C22
23 , C22

32 , and
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C22
21 (for example the last one denotes a clique between labels l2,1 and l2,2 - see Figure 6.1). The clique

potential takes the form of the 2× 2 table given in Figure 6.2 (b), which denotes the cost wij for site 1
being in state i and site 2 being in state j.

z There could be situations where you know that a certain pixel is more likely to adopt a certain label.
Let’s say, the borders of the image are more likely to be the background. To incorporate such a bias we
use the Unary Term:

Pr(l) =
1

Z
exp

[
− 1

T
U(l)

] P∏
i=1

Pr(li)

z Once more we aim to do inference. Using Bayes’ Rule we have:

Pr(l|X) =
Pr(X|l) Pr(l)

Pr(X)

Although Pr(l) contains the uncomputable Z term, we can still aim to compute the MAP estimation
for the MRF because Z is constant. According to Bayes’ Rule, the posterior probability over the states
is proportional to the product of the likelihood terms and the prior:

l(MAP) = arg max
l

Pr(l|X) ∝ 1

Z
exp

[
− 1

T
U(l)

] P∏
i=1

Pr(xi|li) Pr(li) (6.1)

Its important to note that even finding this MAP solution is not trivial, since this distribution turns out
to be quite complex. MCMC methods give an approximation by sampling from the posterior distribution.
Graph Cuts find the exact MAP solution for the binary labeling problem.

z MRF s have an interesting application in image denoising. We take the same graphical model
given in Figure 6.1, but now the observed noisy image is X = {x1, . . . , xp}, and we will try to infer the
denoised/uncorrupted image l = {l1, . . . , lp}. Hence, we develop this posterior probability:

Pr(l|X) =

∏P
i=1 Pr(xi|li) Pr(l)

Pr(X)

as you can see, we have assumed the values of xi only depend on the label li. If we consider that the
noise process flips the pixel polarity with probability ρ we would have:

Pr(xi|li = 0) = Bernxn
[ρ]

Pr(xi|li = 1) = Bernxn
[1− ρ]

We would define a prior probability over world state to be an MRF, with cliques C. The cliques here will
be only with the four neighbors:

1

Z
exp [−U(l)] =

1

Z
exp

− ∑
(m,n)∈C

Ψ(lm, ln, θ)


where Ψ(lm, ln, θ) is the cost θj,k for having labels at lm = j and ln = k. The cost θj,k would be set to
encourage smooth solutions.
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z It can be argued that the interactions imposed through the prior are too local. To fix this, Field of
Experts (Roth and Black, CVPR ’05) was proposed. In this the label depends on a 5× 5 neighborhood.
In the binary MRF formulation there was some prior probability of observing labels li = 1 and li = 0.
Now there is a prior probability over any configuration of the 25 pixels. The particular probability
distribution that was selected was a Product of Experts (mixture models use weighted sums of simple
probability distribution to create a complex distribution, whereas product of experts use products of
simpler distributions).

z The particular choice of the cost of the MRF, Ψ, is of the form log f(li). The term f(li) defines the
product of experts:

f(li) =
1

ZPOE

E∏
e=1

Pr(jTe li|θe)

where jTe li is used to project the 25 pixel patch data onto a particular axis. 1D t-distributions are used for
these projections je whose parameter θe are learned from training data. Now taking Pr(xi|li) = Gxi

[li, σ
2],

we can find the MAP solution: arg maxl Pr(l|X)

6.4.1 Markov Chain Monte Carlo

z One näıve way to get the MAP solution would be to keep drawing random samples from the posterior
distribution, and one with the highest probability will be the approximate MAP solution. But note that
most of the states should have a low probability as they don’t fall in the domain of natural images.
Hence this requires some intelligent sampling where we only sample from high probability areas. Such
class of algorithms are known as Markov Chain Monte Carlo methods (MCMC). The key idea is that
the current sampling will only depend on the previous sample (Markov Chain part), yet the choice of
sampling is not deterministic (Monte Carlo part).

Gibbs’ Sampling

z Gibbs’ Sampling is an example of a MCMC method. To illustrate the idea, consider the distribution
Pr(l). We first choose a random starting location l[0]. We generate the next sample by taking turns on
the different dimensions (in the MRF each dimension corresponds to the pixel site). At each step we
sample from the conditional probability Pr(li|l1...P\i) so that we only change values for a single dimension

while keeping others constant. Once we have done this for every dimension we will have l[1]. We can
proceed similarly and get l[n]. Note that at each step we are more likely to change the current label to a
configuration with overall higher probability (although the stochastic nature will result in some sampling
from less likely regions). Similarly this can be done for the posterior distribution:

Pr(li = k|l1...P\i,X) =
Pr(li = k, l1...P\i,X)

Pr(l1...P\i,X)
=

Pr(li = k, l1...P\i,X)∑2
a=1 Pr(li = a, l1...P\i,X)
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6.4.2 Graph Cuts

z To find the exact MAP solution for an MRF we use Graph Cuts with the following steps:

1. Write the maximization of the posterior probability in terms of energy minimization.

2. Express this minimization in terms of finding the min-cut on a graph.

3. Solve the min-cut by solving an equivalent problem of finding the max-flow from source to sink of
the graph.

z Remember that we wanted to maximize the posterior probability (see Equation 6.1). Since the
logarithm is a monotonic transformation, we can equivalently maximize the logarithm of this equation.
Now rather than maximizing this function we can minimize the negative of this term, hence we have:

l(MAP) = arg min
l

P∑
i=1

Ai︸ ︷︷ ︸
unary term

+
∑

(m,n)∈C

B(lm, ln)

︸ ︷︷ ︸
binary term

where Ai = − log Pr(xi|li) and B(lm, ln) is the cost of the neighboring pixels taking their respective
label values. The binary term is also called the pairwise term. The graph (see Figure 6.2) is set up in
a way that the edge-weights on the source t-links is given by the unary cost for being label 2 and the
edge-weights on the sink t-links is given by the unary cost for being label 1.

z The min-cut (by saturating the flow using the augmenting paths algorithm) corresponds to the
minimum of the energy function. For each node we should break a t-link to the source or t-link to the
sink (or otherwise some path from source to sink would not have been saturated)

6.4.3 Multi-label Problem

z Now, given K > 2 labels, how can we solve using an MRF formulation. Now the clique potential/cost
table will be a K ×K matrix. It can be shown that the MAP solution can only be achieved in this case
when cost function is convex. But the problem is that convex function tend blur boundaries. Pott’s
model is an example which has a discontinuity preserving cost function: no cost when labels are the
same; constant cost regardless of the level of disparity in labels.

z Alpha Expansion is an algorithm provides an approximate solution to non-convex cost functions.
It breaks down the multi-label problem into a binary MRF formulation. On each iteration it randomly
selects a label α ∈ {1, . . . ,K}. Then it takes all pixels which don’t have the label α. Now each pixel
is formulated as a binary cut problem, where it considers changing the pixel to label α or keeping its
current label. The process is iterated until no choice of α triggers any change in labeling. Each expansion
move (the change in label) is guaranteed to lower the objective function - although it is not guaranteed
that the final result will be the overall minimum.
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Appendix

z Given a vector of multivariate gaussian random variables z:

Pr(z) = Pr

([
x
y

])
= Gz

([
a
b

]
,

[
A C
CT B

])
Conditional distributions of Gaussian are also Gaussian:

Pr(x|y) = Gx(a + CB−1(y − b), A−CB−1CT)

Pr(y|x) = Gy(b + CTA−1(x− a), B−CTA−1C)

z Product of two Gaussians is also a Gaussian:

Gx(a,A)Gx(b,B) ∝ Gx[(A−1 + B−1)−1(A−1a + B−1b), (A−1 + B−1)−1]

z Consider a Gaussian in x with a mean that is a linear function H of y

Gx(Hy,Σ) ∝ Gx[(HTΣ−1H)−1HTΣ−1x, (HTΣ−1H)−1]

z Any linear function of a Gaussian variable is also distributed as a Gaussian. If x as Gx(µ,Σ), then
the random variable Ax + y is also a Gaussian:

Pr(Ax + y) = Gx

(
Aµ+ y, AΣAT

)
Setting A = Σ−1/2 and the vector y = −Σ−1/2µ, gives us the probability distribution Gx(0, 1). This is
known as whitening transform.
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z The convolution of two Gaussians is also a Gaussian:

Gx(a,A) ∗ Gx(b,B) = Gx(a + b,A + B)

This happens in practice when we draw from one distribution and from a second distribution and add
the results. The distribution of the sum is equal to the convolution of the original distributions.
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