
Chapter 0: Ahmad Humayun

z Unit length vector: v̂ = v
|v| = v

||v||2

z Dot product:
u.v = 〈u, v〉 = |u||v| cos θ

results in a scalar. Equal to 0 when orthogonal; equal to 1 when parallel and unit vectors.

z The cross-product is computed as:

a× b =

∣∣∣∣∣∣
i j k
ai aj ak
bi bj bk

∣∣∣∣∣∣
=

∣∣∣∣aj ak
bj bk

∣∣∣∣ i− ∣∣∣∣ai ak
bi bk

∣∣∣∣ j +

∣∣∣∣ai aj
bi bj

∣∣∣∣k

z Parametric equation of a ray: P (t) = P0 + t(P1 − P0)

z Points to Parametric equation: P (t) = (x− x1)(y2 − y1)− (y − y1)(x2 − x1)

z Equation of sphere: (x− xc)2 + (y − yc)2 + (z − zc)2 = r2

z Rotation followed by translation:

R.T =


R1 R2 R3 0
R4 R5 R6 0
R7 R8 R9 0
T1 T2 T3 1



z Rotation around the 3 axis:

Rz(θ) =


cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 Ry(θ) =


cos θ 0 − sin θ 0

0 1 0 0
sin θ 0 cos θ 0

0 0 0 1

 Rx(θ) =


1 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1



z Specular Reflection is where the direction incoming light (the incident ray), and the direction
of outgoing light reflected (the reflected ray) make the same angle with respect to the surface
normal.

1

Ahmad Humayun Chapter 0:

z Diffuse reflection is the reflection of light from an uneven or granular surface such that an
incident ray is seemingly reflected at a number of angles.

z Parametric equation from COP to the center of a pixel:

P (t) = (x(t), y(t), z(t))

= (t[xmin + fwidth(i+ 0.5)], t[ymin + fheight(j + 0.5)], d− td)

fwidth = (xmax − xmin)/M

z Ray casting is the use of ray-surface intersection tests. If we intersect a ray with a sphere at
the origin:

x2 + y2 + z2 = r2

(tX)2 + (tB)2 + d2 − 2td2 + t2d2 = r2

t2(X2 +B2 + d2) + 2t(−d2) + (d2 − r2) = 0

At2 + 2Bt+ C = 0

If the discriminant gives positive real roots, the line intersects with the sphere. The smallest value
of t would give the distance to the sphere.

z Ambient Light is constant throughout scene and cheap approximation to global illumination.

z Diffuse reflector scatters light (equally) in all directions. Incoming direction of light is still
important because it decides the reflected intensity equals cos θ = n.l, where n is the normal of the
surface and l is the direction of incident light. This is called Lambert’s law.

z Local illumination equation:

Ir = kaIa +

M∑
j=1

Ii,j (kd(n.lj) + ks(n.hj)
m) (1)

Ir is intensity radiating from object.
n is the normal to the surface of the object.
Ia is ambient light, and ka is the proportion of ambient light reflected.
Ii,j is the incoming intensity of light j.
lj is the vector (direction) of light j. kd is the proportion of diffuse light reflected (diffuse reflection
coefficient).
hj is the normalized direction vector for specular reflection from light j. ks is the proportion of

2

Chapter 0: Ahmad Humayun

specular light reflected. m, the shininess, is the power of the light - more m: smaller hightlight; low
m: highlight is blurred. This is the Phong Color Model used for modelling glossy surfaces.

Remember this equation is run for each channel separately to give Ir,red, Ig,green, Ib,blue. This is
because the intensities I and reflectance parameters k are wavelength dependent quantities.

z Using Shadow feelers we can detect if an object is in shadow from a particular light. This is
done by seeing if lj intersects any other objects in the scene. This introduces the term Sj in the
local illumination equation (Equation 1).

z Recursive ray tracing is just done by ray-casting secondary rays recursively. Remember there
needs to be a termination depth. Ray tracing simulates specular-specular reflection.

z Figure 1 shows R which is the reflected ray shot to recursively ray trace.

Figure 1: Reflection model

We need to compute an equation for R with the constraints α = β; and all vectors are normalized:

aR+ bE = N ⇒ aR+ aE = N since the contribution will be the same

1. sin(α) = a sin(π − 2α) from the sine law

sin(α) = a sin(π − 2α)

sin(α) = a sin(2α)

sin(α) = 2a sin(α) cos(α)

∴ R = −E + 2cos(α)N

R = −E + 2(N.E)N

Now the recursive ray tracing equation is:

Ir = Ilocal + krIr′

3

Ahmad Humayun Chapter 0:

where Ilocal was computed in Equation 1, Ir′ is computed recursively by shooting the r′ recursive
ray (following direction R), and kr is the coefficient of reflectance (usually set equal to ks).

z Snell’s law describes the interaction of rays with a transmissive surface (transparent).

sinα

sinβ
=
η2

η1
= η21

α is angle with the surface from the viewing point; η1 is the index of refraction for the surface on
which the viewing ray is incident. We have this equation for the transmissive ray:

T = −η12E +N(η12. cosα−
√

1 + η2
12.(cos2 α− 1)

Negative root here would mean total internal reflection. Now the transmissive ray is shot recursively
just like the reflected ray:

Ir = Ilocal + krIr′ + ktIt′

z Transmissive surfaces can be illuminated from behind in the direction H ′ as shown in Figure 1.
This would give the specular component for transmissive surfaces (kt(h

′.n)m):

H ′ =
E − η21L

η21 − 1

where L is the light coming through the surface.

z General Camera coordinates system: VRP - where the camera is
VPN - where the camera points
VUV - which way is up for camera

z UVN coordinates system: VRP - origin of VC (view-coordinates)
VPN - Z-axis (N-axis) of VC system
VUV - Y-axis (V-axis) of VC system
X-axis (U-axis) for left-handed VC system

z How to map points from World coordinate (WC) to View coordinate (VC) system:

1. n = V PN
|V PN |

2. u = n×V UV
|n×V UV |

4

Chapter 0: Ahmad Humayun

3. v = u× n
4. This forms the rotation matrix:

[
u v n

]
5. Hence the complete mapping matrix that takes you from WC to VC (taking objects to VC):

M =


u1 v1 n1 0
u2 v2 n2 0
u2 v2 n2 0

−〈q, u〉 −〈q, v〉 −〈q, n〉 1


where q is the VRP point (bringing this point to the origin forms this equation). Also the
matrix that takes you from VC to WC (taking rays to WC):

M−1 =

[
RT 0
q 1

]

z A planar polygon (face) is defined as:

[p0, p1, . . . , pn−1, pn], p0 ≡ pn

Equation of plane:
l(x, y, z) = ax+ by + cz − d = 0

remember n = (a, b, c) is the normal, and d = n.p0.

1. l(x, y, z) = 0 - point on plane

2. l(x, y, z) > 0 - point in positive half-space (i.e. in the direction of the normal)

3. l(x, y, z) < 0 - point in negative half-space (i.e. opp. to the direction of the normal)

4. direction of normal decided by the way points that were selected

z Polyhedra is a collection of connected polygons (given that each vertex joins 3 or more edges):
#V ertics−#Edges+ #Faces = 2

z Representations of Polyhedra:

1. Exhaustive faces list each having its point sets

2. Indexed Face Set: Has Vertex array, and a Face array having pointers (indexes) to the
vertex array.

3. Winged edge data structure (WE): Vertex list; Edge list (having vertex pairs); Face list
(having edge lists). Each vertex (ring) has links to next and previous vertices and to the edge
ring; each face (ring) contains links to the next and previous faces and to the edge ring; each

5

Ahmad Humayun Chapter 0:

edge (ring) has links to the next and previous edge and also links to the neighboring vertices
and faces as shown in Figure 2.

Figure 2: Winged Edge data structure

z We can build a WE by: (1) traversing each face CCW, building edges along the way; (2) link
the next and previous vertices and faces; (3) link previous CCW edge (other edges will be filled in
while traversing other faces).

z The Barycentric Combination is just a weighted sum of points, where the sum of weights is
1 (
∑n
i=1 ai = 1):

p =

n∑
i=1

aipi

Barycentric combination for a line is: p(t) = (1 − t)pt + tp2 Note that for a point p is inside a
convex polygon iff 0 ≤ ai, ∀i

z Barycentric coordinates are preserved under affine transformation.

z Intersection of rays with polygons. First step is to find if the ray (r(t) = q0 + tdr, dr is
the direction vector) intersects the plane of the polygon: n.p0 − d = 0. This would be the case if
n.dr 6= 0. Now the intersection point is given by:

tint =
d− n.q0

n.dr
pint = q0 + tintdr

Methods to find if point inside polygon or not:

1. Winding number test: Point is inside polygon if sum of angles subtended from all adjacent
pairs of vetrices is ±2π and 0 if outside.

6

Chapter 0: Ahmad Humayun

2. Infinite Ray test: Shoot ray and count +1 for crossing edge CCW, and -1 for crossing edge
in CW. If result is 0 then point is outside.

3. Half-space test: Point is inside if it is in the negative half space of all the edges on the
polygon.

4. Triangle inside/outside: Given the 3 points A,B,C on the plane, point p is inside if:

[
A B C
1 1 1

]a1

a2

a3

 =

[
p
1

]

and ai ≥ 0, ∀i

We can also project the problem in 2D space by throwing away the axis whose coefficient in the
plane equation is the maximum (i.e. we are trying to minimize the angle between the plane normal
and the normal of the selected 2D axis)

z Scene Graphs are formed using directed acyclic graphs where the links are tranformations -
and the root of the graph corresponds to the world coordinates.

z Each object in the scene graph is modeled in it own local coordinate system.

z An object’s local transformation (LT) maps it from its own local coordinates to its parents
local coordinates. The concatenation of all LT matrices above a node is called the CTM (current
transformation matrix). So, lets say, the CTM for the upper arm would be TUTSTB .

If an object has two parents it will occur at two locations.

z Spherical coordinates are given as:

r =
√
x2 + y2 + z2

tanφ = y/x

cos θ = z/r

z Rotation around an arbitrary axis [p0, p1]:

1. Translate p0 to origin giving p∗1.

2. Get spherical coordinates of p∗1: (r, φ, θ).

7

Ahmad Humayun Chapter 0:

3. Rotate about Z by −φ.

4. Rotate about Y by −θ.
5. Perform the actual rotation about Z.

6. Reverse the first 4 steps.

z Ray tracing is speeded-up by tracing rays to vertices of the polygons and filling the space in
between (Rasterization). Instead of tracing rays:

1. Project all polygons (vertices) onto the viewplane.

2. Transform projected 2D vertices into display coordinates.

For this we need to define:

1. View plane is a plane orthogonal to VPN onto which the scene is projected.

2. View plane distance is the distance from the VRP to the view plane (along the N-axis).

3. Type of projection - perspective: all rays converge to COP; parallel (orthographic): parallel
rays going in direction of projection, DOP remain parallel (where the COP is at −∞). Note
that COP is defined by the offset from VRP.

4. View plane window is the window on the view plane parallel to U and V axes.

5. Front and back clipping planes

z Canonical Frame is the fundamental arrangement to which all projection is done. It has these
properties:

1. COP/DOP - (0,0,-1).

2. View plane parallel to UV plane.

3. View plane bounded by ±1.

4. View plane distance = 1.

z How to get to canonical perspective:

8

Chapter 0: Ahmad Humayun

1. Move the view plane to UV plane (such that n = 0):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −d 1


2. Translate COP to N-axis: 

1 0 0 0
0 1 0 0
0 0 1 0
−cx −cy 0 1


3. Change View volume to a regular pyramid:

2D/dx 0 0 0
0 2D/dy 0 0

−px/dx −py/dy 1 0
−(px/dx)D −(py/dy)D 0 1


D = d − cz, dx = U2 − U1, dy = V2 − V1, px = U1 + U2 − 2cx, py = V1 + V2 − 2cy,
where U1, U2 and V1, V2 are viewplane boundaries.

4. Scaling: 
1/D 0 0 0

0 1/D 0 0
0 0 1/D 0
0 0 0 1



Multiply all four matrices to get the Q matrix. Now we can get the transformation matrix:

T = M︸︷︷︸
WC to VC

Q︸︷︷︸
VC to canonical VC

z The final step is to transform into canonical parallel space (which incorporates perspective
projection):

P =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


which gives us the point

(
x
z+1 ,

y
z+1 ,

z
z+1

)
. From now the projection onto the X-Y plane is obtained

by simply ignoring the Z component. If you also want to incorporate the front and back clipping
plane:

P =


1 0 0 0
0 1 0 0
0 0 Dmax+1

Dmax−Dmin
1

0 0 −Dmin(Dmax+1)
Dmax−Dmin

1


9

Ahmad Humayun Chapter 0:

z Clip polygons for numerical stability; avoid drawing stuff behind the eye; avoid wasting time
on object outside image boundary. In short clipping is the process of finding the exact part of the
polygon inside the viewing volume.

z Analytical clipping:

1. Sutherland-Hodgman Algo.: Clipping from each boundary edge in turn.
(1) Iterate over all polygon edges ((Pi, Pi+1)) for each boundary,
(2) if entering - output (p, Pi+1),
(3) if exiting - output (p),
(4) if totally outside then output nothing,
(5) if totally inside output (Pi+1).
In all cases p is the point of intersection with the edge. This can be extended to 3D by using
6 planes rather than 4 lines (intersection computed with edge to a plane). In 3D normals of
planes will point to the interior, and we need to reject (cull) a point when N.p < d.

2. Weiler-Atherton Algo.: Used when we have convex polygons (in which case Sutherland-
Hodgman will return degenerate edges). It produces separate polygons for each visible section:
(1) Compute intersection points with all edges. Classify them as “leaving” or “entering”.
(2) Create CW loop of polygon vertices; also create a separate CW loop of boundary vertices.
(3) Incorporate the intersection points with connections to all lists.
(4) Start with entering vertex: if you encounter a leaving vertex, shift to clip boundaries loop;
if you encounter an entering vertex, shift to polygon loop; ends when you arrive to the entering
vertex you started from.
(5) Repeat till no entering vertices left.

z Clipping in canonical parallel space is simple because we just need to check for inequalities with
a single axis for each plane (remember our viewing volume is a cube now).

z Scan-line coherency says if an edge is not parallel to the scan line, the next x coordinate on
the scan line will be:

xi = xi−1 +
1

a
where a is the gradient of the line.

z Active edge table (AET) for rasterization have these entries:

(y2, x1, dx)

where dx = (x2 − x1)/(y2 − y1)

10

Chapter 0: Ahmad Humayun

1. Each row in the edge table will belong to a particular scan line. Each row is sorted by the
current x value.

2. Delete edges whose y2 is equal to the current scan line index.

3. Iterate over each scan line and increment the x value of each edge still in the table with dx.

4. Appends all new edges to the edge table whose y1 equals the current scan line index.

5. Output spans as pair of consecutive x values still in the list.

z Shading in Rasterization:

1. Gouraud Shading (comes from Lambert’s law) uses the above method extends the edge
table by:

(y2, x1, dx, r1, dr, g1, dg, b1, db)

Now increment the RGB values when moving over scan lines and linearly interpolate as we
move across a scan line. Here dr = (r2−r1)/(y2−y1). The initial values for RGB are computed
on the edge vertices by analytically computing the normals. To use this method, polygons
must be sufficiently small with respect to the distance from the light.

2. Phong Shading (comes from Phong color model) is used to get specular highlights back into
the polygons. Rather than interpolating RGB values, it interpolates normals across scan line
and then uses the Equation 1 to get the actual color.

z Half-space based triangle rasterization:

1. Compute projection of triangle.

2. Make bounding box around the triangle (only consider area: xmin, xmax, ymin, ymax).

3. Compute the line equations for each pixel. If for all Li(x, y) > 0 (positive half-space test) then
point inside.

4. If pixel inside, paint it with triangle color.

5. You can also sub-divide the bounding box.

z Depth Rasterization:

1. Directly compute z value from plane equation. This is done for each pixel.

2. Pre-order polygon (as done in visibility determination).

3. Use Z-buffer. Initialize it to maximum value - for each pixel in each polygon see if the depth
is less than the one stored in the depth buffer. If so set the depth for that Z-buffer pixel, and
set the colour value in the frame buffer.

11

Ahmad Humayun Chapter 0:

4. Scan line depth buffering can be done using AET (when polygons don’t intersect):

(y2, x1, dx, z1, dz)

where dz = (z2 − z1)/(y2 − y1). Each polygon is processed in a separate AET and the (1D)
Z-buffer is used over each scan line. Has problems of aliasing on depth. Note that all Z value
interpolation need to be done as follows to take into account perspective projection:

Zint =
1

1
Z1

+ s
(

1
Z2
− 1

Z1

)

z Texture Mapping modifies the diffuse component of surface. A texture is defined as a 2D
array of texels.

z Minification: one pixel covers more than one texel.
Magnification: one texel covers more than one pixel.

z Forward mapping gives points on the texture map onto a polygon. The inverse mapping gives
texture vertex for each polygon vertex. Can use barycentric coordinate to paint textures. Can
also put in AET to do bilinear interpolation of texture coordinates. To correct for perspective, we
interpolate points by converting them to:

(u′, v′, q) = (u/z1, v/z1, 1/z1)

once interpolated, divide (u′, v′) by the interpolated 1/z, to get (u, v)

z To solve under-sampling and over-sampling we perform filtering when pasting in textures. We
use nearest neighbor approach; bilinear filtering (weighted average in 4 neighborhood). We can also
use Mip-mapping which creates a pyramid of textures. We now interpolate textures using two
adjacent layers in the mipmap (choice of layer where du and dv for dx and dy is closest to 1).

z Bump mapping alters the surface normal to give effects of texture. This is done by computing
normal from the partial derivatives of the texture.

z Displacement mapping is used to actually move surface point. This is done before any
visibility calculations (to induce shadows).

z Environment maps is used to simulate reflection by using the direction of the reflected ray to
index a spherical texture map at infinity.

z OpenGL is an API which defines a mechanism to specify images in the frame buffer. It is run

12

Chapter 0: Ahmad Humayun

by tracking values in state tables. The pipeline has (1) Vertex assemly, (2) vertex operations, (3)
Primitive assemly, (4) Primitive operations, (5) Rasterization, (6) Fragment operations (fragment
lighting, texture mapping, etc.). Lastly everything is pushed to the frame buffer.

z Vertex shaders are used for custom lighting, transforms, displament models etc.. On the other
hand Pixel shaders are used for per-pixel lighting, etc.

z Radiosity is used to model specular-specular light interactions. This is done using the Radiance
Equation (essentially all lighting solutions in CG are approximations to the Radiance Equation)

z Flux or Radiant Energy, denoted by Φ, is the rate of energy flowing through a surface per
unit time. (watts - W).

z The total light input to a volume should be equal to the total output or absorbed. Input:

1. Emission - emitted from within the volume.

2. Inscattering - light flows in the volume from outside.

Ouput:

1. Streaming - is light flowing through without any interaction with the volume.

2. Outscattering - light interacting with volume and then being reflected out.

3. Absorption - light being absorbed in the volume

z Φ(p, ω) denotes the flux at p ∈ V (in volume), in the direction ω. It can be written in terms of
total light input = output. Complete knowledge of this would give the solution to the illumination
problem. We make a few simplifying assumptions: (1) wavelength independence, (2) time invariance,
(3) light transport in vacuum (non-participating medium).

z The Radiance equation computes the radiance from a point on a surface in a direction ω.

L(p, ω) = Le(p, ω)︸ ︷︷ ︸
emitted radiance

+

∫
f(p, ωi, ω)︸ ︷︷ ︸

BRDF for scaling

L(p∗,−ωi)︸ ︷︷ ︸
radiance arriving from p∗

cos θidωi

︸ ︷︷ ︸
reflected radiance from all other surfaces

(2)

where L(p, ω) is the radiance at point p on the surface along direction ω. The equation essentially
models view-independent global illumination.

13

Ahmad Humayun Chapter 0:

z Radiance L is the flux that passes through or is emitted from a particular area, and falls
within a given solid angle in a specified direction. Measured in watts per steradian per square metre
(W.sr−1.m−2). Remember radiance is constant along a ray!

z Solid angle dωb = dB cos θB
r2 , where dB is the area of a patch, and r is the distance between the

patches.

z Radiosity is flux per unit area that radiates from a surface: B = dΦ/dA. Irradiance on the
other hand is the flux per unit area that arrives at a surface (given by E).

z The bidirectional reflectance distribution function (BRDF) relates radiance to irradiance
(units 1/sr):

f(p, ωi, ωr) =
dL

dE

It essentially defines the look of the surface. It is usually computed by relying on the ideal types:
(1) perfectly specular, (2) perfectly diffuse (ρ/π), (3) glossy reflection. Properties of BRDF include:

1. f(p, ωi, ωr) ≥ 0

2. Energy conservation:
∫

Ω
f(ωi, ωr)dµ(ωr) ≤ 1 ∀ωi

3. f(ωi, ωr) = f(ωr, ωi)

z Radiant intensity is a measure of the intensity of electromagnetic radiation. It is defined as
power per unit solid angle - watts per steradian (W.sr−1).

z Ray tracing is an image space algo., radiosity is an object space algo. Radiosity is a view
independent solution and remains constant as long as light sources don’t move.

z Estimated Radiosity quantity stored with the surface - and works only for energy exchange in
diffuse surfaces. We change Equation 2 to:

L(p, ω) = Le(p, ω)+

∫
f(p, ωi, ω)L(p∗,−ωi)

geometric term for dist./orient.︷ ︸︸ ︷
G(p, p∗) V (p, p∗)︸ ︷︷ ︸

binary visibility term

dA(p∗) (3)

Since we are thinking of perfect diffuse surfaces, we can ignore the BRDF:

Bp = Ep + ρp

∫
Bp∗ G

′(p, p∗)V (p, p∗)︸ ︷︷ ︸
form factor

dA(p∗) (4)

14

Chapter 0: Ahmad Humayun

where G′ includes a 1/π factor, ρp is the reflectance coefficient. Remember the relationship between
radiance and radiosity is:

B(p) = πLdiffuse(p)

We further convert this problem to a discrete representation:

Bi = Ei + ρi

n∑
j=1

FijBj

shows that the radiosity from path i is equal to radiosity directly emitted from i, plus the proportion
of irradiance that it reflects out again. The incoming energy is the sum of the irradiance received
from each patch j but modified by the proportion of energy from such a patch that arrives at i
(determined by form factor). The form factor Fij tells the fraction of energy leaving patch i which
arrives at patch j. These form factors follow the law of conservation:

∑n
j=1 Fij = 1 and reciprocity:

FijAi = FjiAj .

1. Divide scene into small patches (mesh). Each patch is associated with total energy leaving
the surface (Radiosity).

2. Use gauss-seidel relaxation to compute radiosity patch by patch:
B

(k+1)
1

B
(k+1)
2

...

B
(k+1)
n

 =


E1

E2

...
En

+


ρ1F11 ρ1F12 . . . ρ1F1n

ρ2F21 ρ2F22 . . . ρ1F2n

...
...

. . .
...

ρnFn1 ρnFn2 . . . ρnFnn



B

(k)
1

B
(k)
2
...

B
(k)
n


3. How to compute the form factor:

FdAidAj
=

cosαi cosαj
πr2

V (dAi, dAj)

Fij ≈
∫
Aj

cosαi cosαj
πr2

dAj

Here the Nusselt Analogy says that the form factor is equal to the proportion of projected
area on circular base. The Hemi-cube Approximation uses a lookup table on a hemi-cube
to get pre-computed delta form-factors. By projecting all patches on this hemi-cube, the sum
of all delta form factors gives the final form factor:

∆Fq =
1

π(x2 + y2 + 1)2

4. Ray-casting can be used for radiosity computation by taking a sample of points on the source
patch, and trace and sum contributions to the receiver patch.

Since the full solution can be slow we follow the Shooting method:

15

Ahmad Humayun Chapter 0:

1. Set Bi = ∆Bi = Ei where i is an emittor patch.

2. Sort Ai∆Bi into descending order.

3. For each patch i compute the form factor Fij

4. For each patch j 6= i, compute:

(Bj due to Bi) = ρjBiFij
Ai
Aj

5. Add the component computed to ∆Bj .

6. Also add to Bj .

7. Set ∆Bi = 0

unshot energy average U =
∑n

i=0 ∆BiAi∑n
i=0 Ai

average reflectance ρavg =
∑n

i=0 ∆Aiρi∑n
i=0 Ai

infinite interreflections R = 1
1−ρavg

ambient → R.U
display Bi = Bi + ρiAmbient

z Umbra the part of the shadow that sees no light.
Penumbra the part of the shadow that receives some light.

z Soft-shadows (only possible with area light sources) are produced by shooting multiple shadow
rays.

z Fake-shadows produced by projecting the object onto the ground. Gives no inter-object shad-
ows.

z Shadow maps: (1) Use light source as the view point and compute the Z-buffer - giving the
shadow Z-buffer; (2) from the view point, before we scan-convert an object, we transform its point
to the light-space and only paint the pixel if the depth less than or equal to the one given in the
Z-buffer.

Shadow map filtering can be done to give smooth shadows by doing an averaging (percentage closer
filter) across a set of neighboring pixels.

z Shadow Volume is the volume of space occluded by an object infront of the light. Each
silhouette edge of the polygon object gives a shadow plane. By shooting a ray to our point of
interest we just need to count the front-facing and back-facing shadow planes the ray crosses. If
their difference is 0 then the point is not in shadow. Done in two steps:

16

Chapter 0: Ahmad Humayun

1. Find the plane equations for all shadow planes.

2. At run-time determine the shadow plane count per pixel. Here the stencil buffer can be used
for counting the number of SV planes crossed (stencil buffer is set iff Z-buffer test passed):
(a) render scene into RGB and Z-buffer.
(b) render shadow polygons with stencil-buffer (do the increment and decrement count).
(c) Re-render the scene with lighting off by only rendering pixels where the stencil-buffer is
non-zero.

z Sampling methods for Soft shadows:

1. Soft shadows can be rendered by dividing the area light source into multiple point light sources
(randomly placed) and rendering hard shadows with them.

2. Soft shadows can be done by illumination maps where shadows are precomputed - hence in
this method we cannot changee the lighting condition.

Analytical methods for Soft shadows:

1. Extremal Shadow boundaries compute the planes for penumbra and umbra. If we write
these planes into object space, using scan-conversion we can find the contribution of light at
each point.

2. Discontinuity meshing subdivides the plane into discontinuity points and computes illumi-
nation intensity at these points. Use quadratice approximation in areas between the points.
Places where EV and EEE surfaces (from aspect graphs) intersect the polygon define critical
points where shadows visually change.

z Visibility Culling needs to be used for speed-up and accurate rendering. One solution is simply
to use the Z-buffer.

z Back-face culling is used to decide which polygons not to render. If COP (cx, cy, cz) then if
l(cx, cy, cz) > 0 COP is in front.

In projection space, the polygon plane should have a negative z-component n to be visible. For this
we need to compute the plane equation in projection space:

q.

T−1.


a
b
c
−d


 = q.m = 0

17

Ahmad Humayun Chapter 0:

Just look if the z-component of m is negative.

z How to order the polygons in order of their depth

1. Z-sort Sort back-to-front according to the z-axis values at mid-points.

2. Depth-sort (Newell et al.) It says that P can be rendered before Q if any of these conditions
are satisfied:

(a) Z-extent of Q is wholly infront of P .

(b) Y-extent or X-extent of Q does not overlap with P .

(c) All points on P lie on the opposite side of Q than the COP.

(d) All points on Q lie on the same side of P as the COP.

(e) If the projections on the XY plane don’t overlap (run 2D polygon overlap tests)

3. Schumacker uses an object space method. Works on the idea if you can define a plane
between two objects, then the polygon lying in the same half-space as the viewpoint will have
higher priority. Builds a tree by dividing the whole space into partitioning planes.

4. Binary Space Partitioning Trees (BSP): Build tree independent of viewpoint:
(a) Choose arbitrary polygon and make it root of the tree (partition the space where the
direction of plane normal decides the front side).
(b) Perform this recursively (left side of tree is front).
(c) Coplanar polygons remain at the same node.
(d) Split planes if partition falls across them.

This can also be done iteratively, by inserting polygons into the tree. Traverse tree from
a given view point to get visibility ordering (back-to-front):
(a) If viewpoint in front of the plane then traverse back first, render the current node, and
then front.
(b) If viewpoint in back of the plane then traverse front first, render the current node, and
then back.

BSPs can also be used for hierarchical ordering of spaces, representation of polygons or poly-
hedra.

18

