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Abstract — Bioimage computing is rapidly emerging as 

an important area in image based systems biology with 

an emphasis on spatiotemporal localization of subcellular 

bio-molecules, most importantly proteins. A key problem 

in this domain is analysis of protein co-localization or 

co-expression of protein molecules. Imaging techniques, 

such as the Toponome Imaging System (TIS) [1], with 

the ability to localize several different proteins in the 

same tissue specimen are only becoming available 

recently. Traditional co-localization studies and some of 

the modern co-expression studies have serious 

limitations when analyzing this kind of data. Here we 

present a robust framework for the analysis of molecular 

co-expression patterns (MCEPs) in TIS image data. 

Index Terms — Protein co-localization, molecular co-

expression, multi-fluorescence imaging, bioimage 

computing, clustering analysis, MELC, TIS 

I. INTRODUCTION 

In recent years, bioimage computing is emerging as a 

cornerstone of hypothesis-driven research in life sciences 

with an emphasis on spatiotemporal localization [2]. A 

major focus in the post-genomic era is on analyzing 

subcellular protein patterns enabled by the knowledge of 

spatiotemporal distribution of key proteins expressed in a 

given cell type [3]. As proximity of proteins located 

within similar compartments of a cell provides a 

powerful surrogate for functional complexes,  functional 

studies involve proteins which appear to be key players 

in multiple cancer specific complexes. Imaging 

techniques with the ability to localize several different 

proteins in the same tissue specimen such as the 

Toponome Imaging System (TIS) [1], MALDI imaging 

[4], Raman spectroscopy [5], or multi-spectral imaging 

methods [6] are only becoming available recently.  Of 

these, TIS is an automated fluorescence technique shown 

to have the ability to co-map hundreds of different 

proteins or other TAG-recognizable bio-molecules on a 

single tissue section. This results in a multi-tag 

fluorescent image stack with corresponding phase 

contrast images before and after incubation of the 

corresponding antibodies. For each antibody tag, four 

images of the tissue section are obtained, resulting in a 

stack of images for selected visual fields in a tissue 

specimen. These images take the form of an initial phase 

image followed by one under ultraviolet light for 

fluorescence, then a waiting time occurs for the tag 

attachment and specimen rinsing, before another phase 

image is taken with its matching fluorescent image. After 

these 4 images are taken, a bleaching cycle occurs before 

the process begins for the next tag. Before any 

significant conclusions can be drawn about co-

localization of proteins, the image stack must be 

accurately aligned or registered. The phase images can 

be used for alignment purposes since (a) these are not 

expected to vary throughout a TIS run, and (b) each 

phase image is taken a fraction of a second before its 

matching fluorescence image and so it is assumed that 

the phase/fluorescence image pair for a particular 

antibody is perfectly aligned. 

Traditional protein co-localization studies involve three 

key steps: staining the tissue specimen with two or three 

different dyes (such as DAPI for nuclei and a green or 

red fluorescent proteins, also known as GFP or RFP, 

binding to specific antigens), taking fluorescence images 

of each dye with different wavelengths of the incident 

laser beam, and treating the individual fluorescence 

channels as  one of the Red, Green, or Blue channels to 

construct a color image. In this color image, pixel 

locations with yellow color, for instance, indicates the 

simultaneous presence of bio-molecules corresponding to 

red and green channels. A major shortcoming of this 

method of studying protein co-localization is that it does 

not take into account the varying levels of expression of 

different proteins. Another disadvantage is that often this 

kind of simplistic analysis is limited to the study of co-

localization of 2-3 proteins at the same time. 

Multi-tag bioimaging methods, such as the ones 

mentioned above, allow us to study combinatorial 

protein patterns in specific types of tissues and to 

characterize and differentiate between different kinds of 

cells within the same specimen. However, recent 

developments in machine learning and computer vision 

are yet to impart their influence on the data analysis 

pipeline of standard software used with most of these 

imaging systems. For instance, much of the reported 

analysis of TIS image data such as [7] is based on 

binarization using manually selected thresholds. 
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In this paper, we describe a framework to pre-process 

and analyze multi-channel fluorescence microscopy 

images obtained using TIS [1]. The framework is 

composed of three key components: pre-processing for 

robust alignment of TIS images using a modified version 

of the recently proposed RAMTaB algorithm [8], 

segmentation of nuclei, and clustering analysis of protein 

patterns without binarizing individual fluorescence 

images thus allowing for analysis and discovery of 

combinatorial patterns of a whole range of protein 

expression levels or molecular co-expression patterns 

(MCEPs). The proposed framework is generic in nature 

and should be applicable to other multi-channel imaging 

methods such as MALDI [4], Raman spectroscopy [5], 

or multi-spectral imaging methods [6].  

II. MATERIALS & METHODS 

The image data obtained in this study was acquired using 

a TIS microscope installed at Warwick. The human 

colon tissues were surgically removed from cancerous 

patients. For each cancerous tumor, distal normal section 

was also taken from the same patient’s colon. Patient 

consent and appropriate ethics approval were obtained to 

remove and handle these tissues for research. A library 

of 26 antibody tags, some of which are known tumor 

markers and others cancer stem cell markers, were used 

based on a previous study [7]. 

The molecular co-expression analysis framework 

proposed in this paper is based on three major 

components: aligning the images corresponding to 

individual antibodies in a TIS stack with each other, 

segmentation of nuclei and surrounding pixels to 

consider only molecular expression in the cellular areas, 

and analysis & visualization of molecular patterns using 

a clustering method. 

A. Image Registration 

We employ the RAMTaB algorithm [8] for aligning TIS 

images. However, a limitation of that algorithm is that it 

does not explicitly deal with phase images being out of 

focus. Due to the autofocus feature of TIS microscope, it 

starts with the focus that was previously calculated 

(because the lens is already in this position), if there is 

variation between focusing planes of the visual fields this 

could cause a drift of focal plane as the run progresses. 

This can either show itself in the phase images as an out 

of focus image or blurry image, or the sample is focused 

at a different level causing differences in locations of the 

cell walls. However, where the plane of focus has 

changed, some cells appear smaller and some larger. 

This sort of focal error is difficult for the RAMTaB 

registration algorithm to align, as it is not a simple shift 

or shear combination, and so needs to be avoided. 

Therefore the sample needs to be very flat on the cover 

slip and the sample to be as thin as possible. Choosing 

visual fields with similar z coordinates for the plane of 

focus may be effective in reducing focusing errors. 

Experiments have shown that such images can be aligned 

by using recent image de-blurring techniques which use 

a normalized sparsity measure [9]. An example of an out 

of focus phase image is shown in Figure 1(b) – a 

corresponding reference phase image with the right focus 

is shown in 1(a). Figure 1(c) shows de-blurred version of 

1(b) using a standard blind de-convolution technique 

[10], and 1(d) shows de-blurred image with the help of 

blind de-convolution using normalized sparsity measure. 

The blind de-convolution algorithm minimizes the scale-

invariant cost function, l1/l2 norm ratio to estimate the 

kernel blur. The kernel is estimated in a multi-scale 

approach from coarse to fine image resolutions. Once the 

kernel is estimated, the image is de-blurred using the de-

blurring method of Krishnan & Fergus [11]. Images in 

1(a) and 1(d) can be aligned using the RAMTaB 

algorithm [8]. 

 

 

Figure 1: Phase image (a) shows a reference image with normal focus, phase image (b) shows a floating image with out 

of focus capture during the imaging process. Image in (c) shows a de-blurred version of (b) using the standard blind 

MATLAB® deconvolution of Holmes et al. [10], while (d) shows the result of blind de-convolution using normalized 

sparsity measure [9]. All phase images are shown with their complements here for the clarity of display.   

 

(b) (a) (c) (d) 



 

Figure 2: Pseudo-color images generated by taking fluorescence images for three antibodies Muc1, CD57, and DAPI as 

red, green, and blue channels: (a) before registration (b) after registration. The co-localization of Muc1 and CD57 in 

compartments of one of the cells is much more obvious as a yellow in (b). 

B. Nuclei Segmentation 

Once the image data from a TIS multi-fluorescent 

image stack have been aligned, we normalize the 

intensity values in each of the aligned TIS images to 

the range [0,1]. The aligned DAPI channel is then 

segmented in order to extract pixel locations 

corresponding to the cell nuclei and their immediate 

neighborhood only. This step ensures that only 

molecular patterns localized to cell nuclei and 

cytoplasm are considered. This removes signal from 

stroma and lumen in the case of colon, for example, 

which may add noise to the process of pattern analysis. 

This segmentation of pixels into nuclei and their 

immediate neighborhood is achieved using Gaussian 

mixture modeling (GMM) over the normalized 

intensity values of the fluorescent channel images and 

the Bayesian information criterion (BIC) for model 

selection [12] [13].  

C. Clustering Analysis for Extracting 

Molecular Co-Expression Patterns 

(MCEPs) 

After registration and segmentation of the stack of TIS 

images, we obtain protein expression vectors Ii of 

length N at each segmented pixel location i. Since each 

dimension in this vector encodes the difference in 

expression levels after adding a particular anti-body, 

the vector can be used to cluster pixels based on 

responses to N anti-bodies. Our goal is to study how 

well unsupervised clustering can reveal the differences 

in inter and intra- tissue anti-body responses. Our 

approach is based on a simple hierarchical clustering 

method, which is a bottom-up clustering method [14]. 

It starts with each pixel as a cluster and iteratively 

merges these clusters to form bigger ones.  Existing 

clusters are merged to create new ones, reducing the 

number of clusters by   at each of the iterations until 

there is only one cluster containing all the data points. 

For instance, if initially there are   pixels (and an equal 

number of clusters), the first iteration merges two 

pixels to give     clusters. This process can be better 

represented as a dendrogram tree structure, where 

cutting across the tree at level   would give     

clusters
1
. Like many other unsupervised methods, 

hierarchical clustering can also be provided with the 

number of clusters desired. We aim for      

clusters, which we call molecular co-expression 

patterns (MCEPs). These   clusters are produced by 

cutting the tree at level       . As mentioned 

above, two clusters are merged at each iteration. The 

criterion we employ to select these two clusters aims to 

minimize the increase in the variance of clusters [15]. 

Mathematically, at each tree level  , we have clusters 

            
  where         and           . 

Here, we can define the within-class variance of cluster 

   as follows: 
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where     is the centroid vector for cluster   . To make 

clusters for level    , we seek to combine vectors in 
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1
 The algorithm starts at level    , where there are   

clusters. Cutting the tree at level   means truncating 

the tree after level  . 

(b) (a) 
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where      is the Euclidean norm. This step will result 

in a new cluster         ) formed by merging     and 

   , hence reducing the number of clusters by  . 

III. EXPERIMENTAL RESULTS 

Using the above clustering method, we pick the top 20 

clusters localized to nuclei and their vicinities. Each of 

the centroids of these clusters is given a unique pseudo-

color. We employ the MATLAB® jet colormap, a 

variation of the hsv colormap, which goes from dark 

blue (for the first MCEP) to dark red (for the last 

MCEP) passing through the colors cyan, yellow, and 

orange in between. A pseudo-color overlay of MCEPs 

on corresponding phase contrast images using the 

centroids of top 20 clusters for two human colon tissue 

specimens (cancer on the Left and normal tissue on the 

Right) is shown in Figure 3. It can be seen from this 

display of molecular co-expression patterns that there 

is a clear difference in tissue morphology and 

molecular expression at sub-cellular level in normal 

and cancer specimens. This approach is fundamentally 

different to the standard TIS visualization approaches 

using thresholds and random colors [1], [7]. 

Furthermore, by localizing the pattern analysis to 

DAPI-positive pixels and their surroundings we are 

able to filter out any noise due to non-cellular pixel 

locations such as lumen or stroma. 

IV. CONCLUSIONS 

In this paper, we have presented a robust framework 

for the analysis of molecular co-expression patterns in 

multi-tag fluorescent image stacks generated by the 

TIS microscope. The framework should be applicable 

to other multi-tag imaging systems and we hope that it 

will serve as a critical building block for further 

analysis of TIS stacks in cancer studies. 
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Figure 3: Pseudo-color overlay of molecular co-expression patterns (MCEPs) on corresponding phase contrast images 

of two human colon tissue specimens (cancer a and normal b) using the centroids of top 20 clusters. The bar charts in c 

and d show a histogram of the top 20 MCEPs found in the specimens. 
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