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SUMMARY

Unlike state-of-the-art batch machine learning methods, children have a remarkable

facility for learning visual representations of objects through a combination of self-directed

visual exploration and access to a sparse supervisory signal in the form of spoken object

names. Studies of infant development have shown that children are able to locate, track,

and differentiate novel object instances from a continuous sequence of visual inputs without

requiring dense object labels. This thesis develops methods for on-line visual learning in

video which are inspired by infant object learning and are enabled by recent advances in

deep learning architectures. We introduce two methods and a dataset to support this thesis.

First, we demonstrate a convolutional neural network for detecting and tracking objects

in continuous video. These detections are generated by harnessing the temporal continuity

of the visual world, and can be used as space-time trajectories for objects in the scene.

This method is capable of generating space-time proposals from streaming video, which

presents a starting point for on-line weakly-supervised learning. We show that a network

can be trained to detect objects more reliably when given a sequence of frames, while being

2.5 times faster when compared to traditional single frame detectors.

The second part of this thesis studies the incremental learning paradigm in a setting

similar to an infant’s play environment. To mimic an environment where children pick up,

examine, and put down different objects, we develop a novel data generation pipeline which

can produce an arbitrary number of learning exposures composed of videos of rotating

objects. Enabled by this data generator, we introduce a novel object learning problem,

known as self-directed incremental learning, where an agent needs to decide whether a

learning exposure corresponds to a previously-seen object or a new object. We present

a simple solution to this problem, which has the ability to work with 100 unique objects

shown repeatedly to the learner. From our extensive experiments we conclude that the

effect of catastrophic forgetting, the main obstacle in adapting batch learning algorithms



to an incremental learning setting, is diminished when learners are repeatedly exposed to

different views of the same object.



Chapter 1

Introduction

Consider a child learning to recognize different objects in its environment. Every new ob-

ject they see presents unique visual stimuli which the brain uses to distinguish it from other

categories. Moreover, sometimes the child is told by a caregiver what a certain object is

called, allowing them to name it whenever it appears in future. Over time they contin-

uously learn new object concepts, with names which help build their vocabulary. Even

though these capabilities seem unremarkable to human observers, it employs elaborate

mechanisms in the brain, which are yet to be fully understood by cognitive and neuro-

scientists. This type of learning is certainly remarkable knowing that no vision algorithms

exist which can mimic this feat given natural videos.

The main goal of this thesis is to replicate the ability of infants to continuously learn

new object concepts. This learning is enabled by two important perceptual abilities. Firstly,

studies in cognitive science have shown that the ability to localize objects happens quite

early in the development of visual perception [1, 2]. This helps infants build rich visual

representations of objects. This learning is further helped by the capability for smooth

pursuit from a young age — the capacity to track objects without having to identify (name)

them [3]. These findings suggest that the ability to localize and track objects is necessary

for learning new object concepts.

1



The thesis makes three contributions in the direction of continuous object learning.

We first develop an unsupervised algorithm to produce object segmentation proposals in

images. This technique can be extended by stitching proposals in time to generate candidate

object segmentations over the extent of the video. The second contribution is a supervised

approach to localize objects in space-time, i.e. find and track objects in video. Since it

is trained on a fixed category set, it can classify objects — resulting in a complete video

object detection algorithm. The last contribution of this thesis is a detailed study of infant

learning in a play environment where an agent picks up, examines, puts down different

object over time. We explore two different paradigms in this setting: (1) where labels are

available for each object; and (2) where the only supervision available to the learner is

when was an object picked up or put down. A discussion about these methods follows the

thesis statement below.

Videos provide an effective signal for detecting objects in space-time, as well

as in categorizing objects in a self-directed learning problem.

1.1 Locating, Tracking, and Identifying Objects in Video

Recently object proposals and deep learning have been successfully combined for detection

in images [4, 5]. A natural question is whether these ideas can be extended to video. Inter-

estingly humans learn to locate and identify objects from continuous sensory input - which

suggests that a machine might learn a better object detector if it integrates information over

time. To test this hypothesis, two ideas are explored in Chapter 3. (1) Whether long-range

motion is useful for spatio-temporal localization of objects; and (2) if video proposals can

be accurately classified into object categories using a convolutional neural network, har-

nessing both motion and appearance information. This method would be compared with

a more traditional approach to generate video object detections, where single frame detec-
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tions are stitched in time. Chapter 2 would describe one part of such an approach, where

an unsupervised energy minimization scheme is used to produce image proposals. These

proposals can either be directly classified into categories, or used to generate object tracks

using a least squares formulation [6], and then classified into categories using some aggre-

gate features.

The convnet video object detection algorithm is motivated by experiments in neuro-

science, and psychophysics, which show that motion is valuable for recognition tasks. In

early 1970s, Johansson [7] demonstrated that our visual perception is adept at recognizing

humans and their different actions given only motion stimuli, which he termed as “bio-

logical motion”. By just seeing 10-12 dot patterns placed over body joints, viewers not

only recognized human movement but also differentiated nuances such as a tired or an

elastic gait. It is also known that neurons which respond to biological motion lie in the

primate temporal cortex, which is the same neural region responsible for object recogni-

tion [8]. Other studies point out that motion is critical for grouping objects and recognition

in early stages of human visual development [2]. An interesting application of these ideas

was explored by Mitra et al. [9] in designing CAPTCHA sequences where objects can

only be recognized when viewed in motion - whereas objects remained elusive if a single

frame is seen in isolation. In all these experiments, most, if not all, appearance information

(color/texture), useful for recognition, was removed in order to reveal the importance of

motion.

Despite strong precedent from biological visual systems, few algorithms use motion

for object localization or detection. On the other hand, single image object detection has

advanced remarkably in the last three years, largely due to the resurgence of supervised

learning on deep architectures [10, 4, 11]. To the best of my knowledge, these ideas have

yet to be explored for detection in video - a problem where motion could be critical in

achieving success.

Chapter 3 introduces a supervised pipeline to exploit motion for detecting objects in
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video. The method makes use of ImageNet Vid [12] amd ImageNet Detection [13] datasets

to train a fully convolutional neural network to generate space-time object detections.

Given input of a fixed number of frames, the network aims to produce detections at multi-

ple locations and scales. This is achieved with a network similar in spirit to the Single Shot

MultiBox Detector [14]. Motion would be exploited for inferring objectness and localiza-

tion at each receptive field, by making use of 3D convolutions. The chapter also extends

the notion of anchors [5] to space-time.

1.2 Increment Learning of Objects in Video Inspired by

Infant Learning

Consider a robot being manufactured with preloaded knowledge of a small number of ob-

ject classes. For it to perform well in specific environments, it might need to learn about a

different set of object categories. A robot might know how to recognize a spoon and a fork,

but the end user might want to train it to recognize chopsticks. As argued before, infants

perform this function by continuously learning new object categories in their daily life. For

a robot to mimic this capability, it would need to seamlessly learn new object categories

whenever the environment provides a learning signal. A batch learning method would not

suffice here since storing all training samples over time would be infeasible. The learning

would need to be done on-line, where the robot just adjusts decision boundaries given any

new training samples.

We explore the issues surrounding on-line learning in a settting inspired by an infant’s

play environment. Infants learn about objects through their repeated manipulation of a

relatively small set of toys and other household items. They acquire object knowledge

through play, picking up, examining, and putting down objects, and thereby creating a

sequence of learning exposures, each of which consists of a contiguous sequence of frames

from a single rotating object. We argue that the temporal nature of this input not only
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provides important learning signals, but also makes the seamingly unsurmountable task of

un-supervised learning tractable.

We introduce a novel object learning problem, known as self-directed incremental

learning, which is inspired by recent findings in developmental psychology. To experi-

ment with different algorithms in this paradigm, we present a data generation system which

can produce arbitrary numbers of learning exposures through computer graphics rendering.

We present a method for incremental object learning which solves the problem of deciding

whether a learning exposure corresponds to a previously-seen object or a new object. We

provide extensive experimental results that characterize the difficulty of the self-directed in-

cremental learning problem and highlight its relationship to existing incremental learning

methods.

1.3 Thesis Proposal Organization

The thesis is organized over three chapters. The first two chapters discuss how to generate

image object proposals in an unsupervised setting, and video object detections in a super-

vised setting. The last chapter discusses the paradigm of incremental learning in videos of

moving/rotating objects, explored in a synthetic infant play environment.

Chapter 2 — Unsupervised Object Proposal Generation: This chapter discusses pub-

lished research [15] on an unsupervised technique to generate object proposals in an image.

It uses a parametric min-cut formulation to generate object segmentations at increasing

scales at different seed locations. The research identifies the ‘middle child’ problem which

hampers the ability of parametric min-cut in generating proposals of all sizes. It demon-

strates a simple solution to adjust CRF unaries as a function of the geodesic distances on a

superpixel graph.

Chapter 3 — Video Object Detection: In this chapter I demonstrate an end-to-end train-

able pipeline to generate space-time object detections. I would demonstrate a fully con-
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volutional neural network which takes a fixed number of frames as input, and generates

video object detections over the given time extent. These detections can be seen as short

tracklets, which are stitched together across consecutive time windows by simple bipartite

matching to generate object tracks over the extent of the video.

Chapter 4 — Incremental Learning of Objects Inspired by Infant Play: This chapter

discusses ideas for incremental learning of object categories in an environment inspired

by studies from developmental psychology. To enable this research, we developed a data

generation pipeline which can produce an arbitrary number of video sequences of toy-like

rotating objects. We call each of these sequences as a learning exposure. In this chapter we

study the effects on different incremental learning algorithms when given a single learning

exposure to each object instance, as well as multiple exposures to the same object instance.

We also introduce and exhaustively study the novel problem of self-directed incremental

learning — which we propose as the un-supervised learning problem in an infant play

setting. In this paradigm the learner is only aware of when an object was picked up or

put down, and the goal of the algorithm is to infer whether a learning exposure contains

a new object or one seen before. We demonstrate a simple, yet effective, solution to this

self-directed learning problem, which is able to categorize a large number of objects.
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Chapter 2

Unsupervised Object Proposals from

Improved Seeds and Energies

Locating objects is an important task for any visual perception system. If an agent wants to

manipulate an object, it not only needs to know what the object is, but also where it is. The

importance of localization (locating objects) is apparent from studies of the mammalian

brain. Cells throughout different stages of the human visual cortex organize information

retinotopically - adjacent cells in visual cortex correspond to adjacent locations on the retina

- allowing humans to spatially localize objects in their visual field [16]. Also, studies have

revealed that areas of the brain responsible for object categorization are also cognizant of

object location [17], which suggests the need for localization to perform object recognition.

One goal of computer vision is to build systems which can act in the visual world, which

makes localization an important mid-level representation for many algorithms.

Object detection and semantic segmentation are two critical tasks in computer vision

which require localization. Object detection refers to categorizing as well as locating ob-

jects, whereas, semantic segmentation refers to pixel-wise categorization of a scene - which

needs accurate localization of boundaries. Many of the object detection [18, 4, 19, 20, 21,

22, 23, 24] and semantic segmentation [18, 25, 26, 22] pipelines attempt to localize objects
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using a figure-ground object proposal method [27, 28, 29, 30, 31, 32, 33]. These proposal

methods were introduced as a replacement for sliding window schemes [34], to generate a

smaller pool of possible object locations. Some proposal algorithms can even retrieve the

shape of an object, which can help recognition tasks.

Malisiewicz and Efros [34] were the first to suggest generating a large pool of proposals

for recognition. Amongst the ensuing methods, Constrained Parametric Min-cut (CPMC) [27]

was one of the successful techniques to generate segment proposals. The algorithm pro-

duced segments by parametric min-cut (PMC) where a few select seed locations are taken

as priors for object support. Over recent years many detection pipelines based on convo-

lutional neural networks have adopted object proposals for localization [18, 4, 19, 20, 23].

This has spurred many new proposal methods, each aiming to recall more objects from a

smaller pool of localizations. Some of them generate segments by energy minimization via

graph-cuts [35, 36, 37, 29]. Other popular methods perform agglomerative clustering [30,

31], or employ edge-based techniques [38, 32] to generate proposals.

Some object proposal methods generate bounding box localizations, while others pro-

duce segmentations. Studies have shown merits of segmenting objects for recognition

tasks. Malisiewicz and Efros [34] demonstrated that segmentation can result up to 15%

gains in classification performance on a pre-deep-learning pipeline. Gu et al. [39] also

showed the effectiveness of segment based features for both detection and classification.

More recently, the efficacy of using segments with convolutional neural network features

has been demonstrated for detection [20] and for the task of ‘simultaneous detection and

segmentation’ [22]. Part of the reason for this effectiveness is the explicit separation in

representing the object from its context. In light of this evidence, we aim to generate high

quality segment object proposals.

We choose a discrete energy minimization approach to generate segment proposals.

Our study shows that this approach has the potential to generate competitive results in an

unsupervised setting compared to current CRF models, but only if the energy potentials
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Figure 2.1: This example demonstrates the middle child problem. The seed is placed on
the child’s jersey, as shown in a. The probabilistic boundary map suggests that it should be
possible to produce a segment containing just the child in red. Each row shows parametric
min-cuts produced by a method from the displayed seed. The top row demonstrates that
RIGOR [35] is incapable of finding this segment and the bottom row shows our results.
Unlike RIGOR, we are able to capture the middle child (red outlined).

in the model are carefully designed. This technique fits in well with the long history of

graphical models in obtaining elegant, yet effective solutions to hard vision problems [40].

We have observed empirically that PMC tends to produce results of extreme size: seg-

ments are either similar in size of the seed, or they tend to span almost the full image (see

Fig. 2.1 for an example). Segments which are in the middle which often correspond to

particularly salient object candidates are frequently missing, and therefore do not get the

attention that they deserve. We refer to the absence of these segments as the middle child

problem. We will demonstrate that this problem is a natural result of energy potentials used

in existing PMC formulations [27, 36, 35] and cannot be solved simply by tuning parame-

ters or exploring breakpoints exhaustively [41, 42]. The middle child problem significantly

limits the performance of PMC for generating high quality object proposals.

We show why PMC is susceptible to the middle child problem, and propose a simple

solution to produce better proposals over the whole size range. PMC generates increasingly

large segment proposals as the value for the parameter λ grows [42, 27, 35]. The goal

is to control the growth of proposal size as λ increases. We achieve this by tying the

unary potentials of image superpixels to the geodesic distance to the current segment. This

facilitates the generation of medium-sized segments by lowering their energy at particular
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λ values. The approach does not break any necessary condition in the PMC formulation,

thereby maintaining the nesting property [42] of the segments produced. The resulting

algorithm can generate ∼1,000 proposals in ∼3.5 seconds.1

The paper also introduces a new superpixel merging algorithm for generating seeds. It

utilizes an adaptive appearance thresholding strategy to generate a hierarchy of superpixels

of varying sizes, so that more superpixels are generated in regions that have more internal

variation and less are generated in regions with uniform color. This approach generates

a small set of reliable seeds that cover objects of all sizes and diverse appearances, and

improves on previous algorithms for small and less salient objects.

These improvements result in a state-of-art object proposal algorithm. Our method

requires many fewer proposals than its competitors to obtain the same accuracy. The per-

formance of our algorithm is validated on two segmentation benchmarks: PASCAL VOC

and MS COCO [44].

This chapter extends our earlier work [15] in a number of ways. First, we devise a novel

metric in §2.4 to measure the difficulty in segmenting a particular object using a general

PMC formulation without our solution. This allows us to measure how much each ground-

truth suffers from the middle child problem, and verify whether POISE is more capable in

capturing such objects. We also show our method’s performance in retrieving bounding

box proposals, which is similar to the analysis in [45]. This paper also extends evaluation

of POISE on MS COCO and adds experiments comparing average recall at different object

sizes. Furthermore, we give implementation details of our algorithm.

In §2.1 we review proposal generation methods, and their role in detection pipelines.

§2.2 explains in detail the causes and effects of the middle child problem. §2.3 gives an

efficient solution to the problem. §2.4 introduces a method to measure if an object would be

effected by the middle child problem. Our superpixel seed generation method is explained

in §2.5. This is followed by evaluation in §2.7, which quantitatively demonstrates the

1Multi-threaded run-time on Intel i7-3930K. Code is available on-line at http://rehg.org/poise.
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effects of each of our contributions. We conclude in §2.8.

2.1 Related Work

Convolutional neural networks (CNN) have been leading the progress in object detec-

tion [18, 4, 22], and part of their success can be attributed to their use of object proposals.

Before proposal methods, it was common for classifiers to exhaustively test ∼106 sliding

window locations [46, 47]. Object proposal methods [30, 27, 32] provide a more manage-

able set of regions, which in most cases is < 5K. Given a smaller set of regions, it becomes

feasible to apply more complex classifiers, increasing accuracy. Recent experiments have

also shown that using proposals can reduce false positives in a class-specific object detector

like DPM [48].

Malisiewicz and Efros [34] were the first to suggest generating a large pool of proposals

for recognition. In the same paper they demonstrated that segmentation can help increase

classification accuracy.

2.1.1 ConvNet based Proposals

Over recent years, the winning methods for object detection [13, 44] and semantic segmen-

tation [49, 50] have been based on convolutional neural networks. Some of the leading

methods explicitly use proposals to find possible object locations [18, 4, 19, 20, 21, 22,

23, 24]. Following this trend, there have been efforts to generate proposals directly by a

convolutional neural networks.

Szegedy et al. [21] uses a convnet to generate a fixed number of object proposal boxes.

It uses an inception like architecture [51] to predict a predefined number of bounding box

coordinates and an objectness score. Faster R-CNN [5] reduces the number of parameters

to build a proposal network by using a fully convolutional network. Here, each location in

the last convolutional feature map is used to generate multiple boxes, each estimating an
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object location at different scale and aspect ratio.

DeepMask [33] was the first paper to generate segmentation proposals from a dis-

criminatively trained deep convnet. Its network architecture includes a pre-trained VGG

model [52] which extracts features shared by a segmentation and an objectness scoring

branch. Due to multiple pooling layers, segments from DeepMask tend to not stick to true

object boundaries. SharpMask [53] fixes this by having multiple refinement stages, each

attempting to invert the effect of the pooling layer by learning to double the resolution of

the mask generated by the layer above.

Unlike DeepMask and SharpMask, instance-sensitive fully convolutional networks [54]

has no final layer to directly infer a segmentation mask of an object. Rather it uses score

maps which are sensitive to locations on an object (for instance, one score map would

activate at top-left positions of objects). A parameter-less assembling process at the end

allows them to generate proposals at each image location.

2.1.2 Multiple Segmentations

Before the introduction of object proposals, a few methods generated multiple segmenta-

tions as a preprocessing step to dilineate possible objects. Both techniques generate pos-

sible localizations of objects in a scene by providing spatial support for better inference

results. The main difference between the two methods is in terms of constraints placed on

results - when generating multiple segmentations the result is different partitionings of the

image space, whereas segmentation proposals is allowed to generate an arbitrary number

of figure-ground segments.

Russell et al. [55] uses multiple segmentations for discovering (clustering) objects from

a large image corpus. Hoiem et al. [56] finds multiple segmentations useful for generating

3D layouts from a single image. Both these papers are motivated by the idea that no bottom-

up segmentation would produce correct results for the whole scene, but some segments in

some segmentations would capture objects accurately. By scoring each segment for the
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task at hand, good segments can be sampled from the pool of image partitionings.

Proposal generation methods either produce bounding boxes [57, 48, 58], or segments [36,

27, 30]. Recent work [18, 59] argues for latter by demonstrating that segmentation-based

features significantly increase the mean accuracy on both segmentation and detection chal-

lenges in Pascal VOC [49]. Their experiments indicate that both object shape and context

are useful for recognition.

Encouraging results for detection have recently spurred new proposal methods. Selec-

tive Search [30] is one of the more popular methods and is based on grouping. It performs

hierarchical merging of superpixels with different metrics, producing a diverse set of pro-

posals. Yanulevskaya [60] and Bonev et al. [31] improve Selective Search by guiding the

hierarchical grouping process. Yanulevskaya [60] replaces the metrics measuring similar-

ity between regions with a random forest which selects regions to merge at a certain level.

Similar to Selective Search, Bonev et al. [31] constructs regions by hierarchical grouping,

where segment merging is guided by the PageRank algorithm. They also measure the gain

in entropy for each merge to find a small set of final proposals over all hierarchy levels.

Instead of grouping by various metrics, our method segments objects by finding global

minima of an energy function defined on superpixels. This is similar to other methods per-

forming maximum a posteriori (MAP) inference by graph-cuts for proposal generation [27,

35, 36, 37, 29]. Rantalankila et al. [37] produces object segments by performing graph-cuts

after locally merging superpixels.

Recently, there have been some attempts to produce proposals by supervised learn-

ing. Krähenbühl and Koltun’s GOP [38] is a level-set method which produces proposals

by thresholding a signed geodesic distance transform. They also make use of supervised

regression to find good locations to place seeds. Krähenbühl and Koltun’s LPO [29] gen-

erates regions from CRF models trained on VOC. We demonstrate better performance than

LPO without training any models for proposal generation. Pinheiro et al. [33] introduced

a CNN trained on COCO to generate segment proposals. POISE’s segment boundaries
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appear to be qualitatively better than [33], which loses spatial accuracy due to the pooling

layers.

The last two years has also seen significant improvement in edge detection [61, 43].

Making use of accurate structure predicted edges, Zitnick and Dollár [57] introduced a

method to score whether a bounding box completely contains an object. This is simply

done by comparing the number of edge segments contained within to the ones crossing the

boundaries of the bounding box. Even though they output bounding box proposals, the set

of edges belonging to a high scoring box can be used as a cue for generating segments (see

Fig. 1 in [57]).

We refer the reader to Hosang et al. [45] for an excellent review of proposal methods.

In §2.7 we evaluate several methods using the average recall metric which was introduced

in their work.

There have been some efforts to perform object detection and segmentation simultane-

ously. Hariharan et al. [22] extract CNN features on proposals, which are used for classifi-

cation and segment refinement. Dong et al. [59] take a different approach to the problem.

They select semantic segments in the image where sliding window detectors and a segment

hypothesis method seem to be in agreement.

One main contribution of this chapter is the use of geodesically guided PMC to solve

the middle child problem. Kolmogorov et al. [42] review PMC applications in vision. They

demonstrate how PMCs can be used to solve some geometric functionals. Lim et al. [62]

deal with more general constraints to produce accurate segments, when some ground-truth

statistics are available. [63] discusses generating more solutions by decomposing the im-

age. Certainly these methods could be useful for generating proposals, but they typically

produce a segment in the order of seconds. Batra et al.’s work on Diverse M-Best [64]

obtains highly probable solutions beyond MAP by Lagrangian relaxation in MRF models.

This is related to our approach, since both methods change unary costs after obtaining the

first optimal solution. On the other hand, exemplar-cut [65] changes energies to push solu-
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tions toward exemplars. Both these approaches [64, 65] adjust energies to direct solutions

away or towards existing solutions/exemplars, whereas we adjust the energy to encourage

a more complete set of solutions.

2.2 The Middle Child Problem

This three part section defines and explains the middle child problem in PMC for segmen-

tations. We start by introducing the PMC energy and the equivalent graph. In the second

part, we illustrate why the problem exists using a simple model with 3 regions. We gen-

eralize this model in the third section, and show that the problem remains. Our example

images are constructed from concentric regions which mimics the compositional nature of

objects.

Generating Proposals by PMC: Our algorithm uses graph-cuts from multiple seeds to

compute segments. For each seed, a directed graph G = 〈V , E〉 is created with nodes V

and edges E . Using this graph, we construct and minimize the Quadratic Pseudo-Boolean

(QPB) function,

E(x) =
∑
i∈V

(
θ1
i xi + θ0

i xi
)

+
∑

(i,j)∈E

(
ψ11
ij xixj + ψ01

ij xixj

+ ψ10
ij xixj + ψ00

ij xixj
)
.

The solution is the boolean vector x = [x1, . . . , xn]. θ`i is the unary potential associated

with variable vi when it takes the binary label `. The pairwise potential, ψ`ηij , is used when

variables vi and vj take binary labels ` and η respectively.

Since we use Potts energy, where ψ01
ij = ψ10

ij (which we will denote as ψi∼j), we can

simplify the function to

E(x) =
∑
i∈V

(
θ1
i xi + θ0

i xi
)

+
∑

(i,j)∈E

(ψi∼j |xi − xj|) . (2.1)
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(a) QPB function
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trate the middle child problem

Figure 2.2: a shows how a QPB function is represented as a graph, where a min-cut would
minimize the function. b is an example image to demonstrate the middle child problem. In
all graphs, S and T are the special source and sink nodes used by min-cut.

To generate object proposals, we convert this to the parametric pseudo-quadratic form,

where θ`i = α`i + λβ`i , which can be represented as the graph given in Fig. 2.2a. We denote

the resulting parametric energy as Eλ(x). The real-valued PMC parameter λ belongs to

a sequence λ0 < λ1 < · · · < λL. The unary potentials are defined by the values α`i and

β`i . Given these parameters, the energy can be readily minimized by max-flow/min-cut.

Min-cut produces two disjoint sets S and T , where node vi ∈ S iff xi = 1, and vi ∈ T iff

xi = 0. The cut is defined by the sum of edge weights from S to T , which can be verified to

equal the minimization of (2.1). We are interested in the monotonic case for PMC, where

β1
i < β0

i , which can be re-parameterized to get non-decreasing source capacities and non-

increasing sink capacities with increasing λ [66]. The monotonic case gives solutions with

the nesting property, where if xi = 1 for λt, it is guaranteed that xi = 1 for λt+1 > λt [42,

41].

We use PMC to produce multiple segments from each foreground seed at various image

locations. For seed nodes, vs, we enforce xs = 1 by setting α0
s =∞. All remaining nodes

are vi ∈ V\{vs}, each representing a superpixel. E is the set of all superpixel pairs which

share a boundary.
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2.2.1 Simple Model with 3 Regions

To demonstrate the middle child problem, consider the image in Fig. 2.2b with three con-

centric regions. The center region, vs is the seed. Following the formulation in [42], we

set θ0
i = 0. We assume that the unaries on all pixels are a constant, and set α1

i = C and

β1
i = −1, where C is some constant. Translating unaries from a pixel to a superpixel

graph incurs a constant multiplication factor of the size of the superpixel, zi. The result-

ing unary potential is θ1
i = (C − λ)zi. This mimics a standard (uniform) graph used by

CPMC [27], as well as RIGOR [35]. Suppose, ψs∼1 and ψ1∼2 are the costs associated to the

outer boundaries of the blue and green regions respectively. Let us assume zs < z1 < z2

and ψs∼1 < ψ1∼2 (longer boundaries typically have larger capacities).

We can compute the energy of each configuration of the vector x. Since α0
s = ∞, vs

would always be in the foreground. We check the remaining four configurations:

v2

x2 = 0 x2 = 1

v1

x1 = 0 E(x) = ψs∼1 E(x) = ψs∼1 + ψ1∼2 + (C − λ)z2

x1 = 1 E(x) = ψ1∼2 + (C − λ)z1 E(x) = (C − λ)(z1 + z2)

For simplicity, we will refer to the solution x1 = `, x2 = η as 〈`η〉, and 〈10〉 is the middle

child solution. When λ ≥ 0, notice that the 〈01〉 solution will have higher energy than 〈10〉

because z2 > z1. Furthermore, when λ = 0, we will get the 〈00〉 solution, i.e. only vs is in

the foreground, as long as ψs∼1 < ψ1∼2 +Cz1 and ψs∼1 < (z1 + z2)C. minEλ(x) = ψs∼1

in this case. When λ ≥ C, we will obtain the solution 〈11〉, i.e. all the regions are in the

foreground, and minEλ(x) ≤ 0.

The key question is whether it is possible to obtain solution 〈10〉 from some real-valued

λ? For this to be true, two conditions must hold for some λ:

1. ψ1∼2 + (C − λ)z1 < ψs∼1 2. ψ1∼2 < (C − λ)z2

These two conditions imply that E(x) for 〈10〉 should be less than the energies of the 〈00〉
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and 〈11〉 solutions at some λ. The first condition is discounted by our initial condition

ψ1∼2 > ψs∼1, and will only be true if C < λ. The second condition can be true when λ <

C, implying that we will never obtain the middle segment. In practice, one might obtain

the segment in the middle if its boundaries have less total capacity than the boundaries it

encloses, i.e. ψ1∼2 < ψs∼1. Since in a superpixel graph the image boundary/edge strength is

inversely proportional to the pairwise potential ψi∼j , this condition requires that a medium

sized segment boundary must be stronger than its internal boundaries. This is not true in

presence of strong internal structure (e.g. a striped shirt) in conjunction with weak object

edges.

2.2.2 General PMC with n+ 1 Regions

We now demonstrate that the middle child problem also exists for graphs of more general

form with n + 1 regions (the seed, vs contributes the +1), as illustrated in Fig. 2.3. We

would use capacities from S and T as ei + λfi and gi − λhi respectively, as prescribed in

Gallo et al. [41]. Here, ei, fi, gi, hi are all functions of vertex vi, returning non-negative

values. Moreover, gi ≥ λhi, ∀λ to disallow negative capacities on sink arcs. We are

interested in segments that form a single connected component, growing outward from vs.

The aim is to produce all segments 〈1 . . . 10 . . . 0〉, where the last 1 happens at index t. This

translates to the cut given in Fig. 2.3, which is equivalent to the whole region inside the

solid green boundary belonging to vt. In this section ψt ≡ ψt∼t+1.

First, let us look at the energies of different solutions. For 〈0 . . . 0〉, where only vs is in

the foreground,

Eλ(x) = ψs∼1 +
n∑
i=1

(ei + λfi) . (2.2)

For 〈1 . . . 10 . . . 0〉, where the cut passes through ψt, and t ∈ {1, . . . , n− 1} (as illustrated
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in Fig. 2.3),

Eλ(x) = ψt +
t∑
i=1

(gi − λhi)︸ ︷︷ ︸
Unaries cut from T

+
n∑

i=t+1

(ei + λfi)︸ ︷︷ ︸
Unaries cut from S

. (2.3)

Similarly, for 〈1 . . . 1〉, the full image solution is

Eλ(x) =
n∑
i=1

(gi − λhi) . (2.4)

To get a middle segment (a segment enclosed by the solid green boundary), the following

conditions need to hold:

1. Eq. 2.3 should be less than Eq. 2.2:

ψt +
∑t
i=1 (gi − λhi) < ψs∼1 +

∑t
i=1 (ei + λfi)

2. Eq. 2.3 should be less than energies of smaller segments, where 1 ≤ k1 < t:

ψt +
∑t
i=k1+1 (gi − λhi) < ψk1 +

∑t
i=k1+1 (ei + λfi)

3. Eq. 2.3 should be less than energies of larger segments, where t < k2 ≤ n:

ψt +
∑k2
i=t+1 (ei + λfi) < ψk2 +

∑k2
i=t+1 (gi − λhi)

4. Eq. 2.3 should be less than Eq. 2.4:

ψt +
∑n
i=t+1 (ei + λfi) <

∑n
i=t+1 (gi − λhi)

We can think of vk1 as a variable between vs and vt. For instance, this could be the

variable associated with the orange region surrounding vs in the Fig. 2.3 image. Similarly,

we can think of vk2 as the yellow region surrounding vt. To make it easier to analyze

these constraints, we introduce some new variables. The first set of variables is for the

sum
∑lu

i=lb
(ei − gi). The following illustration gives variable symbols, each surrounded

by two lines. Each variable is for the sum, where lb and lu is defined by the labels on the

surrounding two lines. For instance, C =
∑k2

i=t+1 (ei − gi):

1 A k
1

k
1
+

1

B t

t
+

1

C k
2

k
2
+

1

D n
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Figure 2.3: Generalization of Fig. 2.2b to multiple middle regions and unaries defined in
Gallo et al. [41]. The image (left) and the corresponding graph (right) are given. The black
curve on the graph shows the 〈1 . . . 10 . . . 0〉 cut, which is equivalent to the segment inside
the thick green boundary on the left.

Since, both ei and gi are non-negative, all variables A,B,C,D possibly could be negative.

The next set of four variables, M,N,P,Q are defined for the sum
∑lu

i=lb
(fi + hi). They

are defined over the same limits, e.g. N =
∑t

i=k1+1 (fi + hi). Note that these variables can

only have non-negative values. Furthermore, for simplicity, we will use Ψ = ψt∼t+1.

After some simple algebra, and replacing variables, we can convert the four constraints

to:

1. Ψ−ψs∼1

M+N
− A+B

M+N
< λ

2. Ψ−ψk1∼k1+1

N
− B

N
< λ

3. λ <
ψk2∼k2+1−Ψ

P
− C

P

4. λ < − Ψ
P+Q
− C+D

P+Q

Let us suppose we have no control over the pairwise potentials, and we can only adjust

unaries so that λ has a feasible non-negative value that satisfies these constraints. One

way to achieve this is to make the L.H.S. in the first two conditions negative, and the

R.H.S. in the last two conditions positive. Then, there would be some non-negative λ

which will satisfy these constraints. Following this strategy, condition 1 requires A+B >

Ψ− ψs∼1, and condition 2 requires B > Ψ− ψk1∼k1+1. Moreover, to have positive R.H.S

in conditions 3 and 4, we require C < ψk2∼k2+1 −Ψ and C +D < −Ψ respectively.
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There are certain conclusions one can draw from this setup. Firstly, functions fi and hi

have no influence over the chances of obtaining the middle segments. On the contrary, ei

and gi are essential in obtaining any middle segments. To increase the chances to have a

feasible λ, we need ei � gi where 1 ≤ i ≤ t, and gi � ei where t+ 1 ≤ i ≤ n. Of course,

this cannot be simultaneously true for all t ∈ {1, . . . , n− 1}, hence it needs to be adjusted

for each individual t. This observation vouches for the geodesics based solution we give in

the next section.

2.3 Biasing PMC for Obtaining Medium Sized Segment

Proposals

In the previous section, we identified a problem with the structure of standard graph-cut

energies that results in missing medium-sized segments. We propose to solve this prob-

lem by biasing the solutions in a sequence of optimizations to obtain segments which are

close to the last cut. These optimizations are performed on a fixed set of PMC parame-

ters λ0 < λ1 < · · · < λL. The parameter λl is used in minimizing Eλl(x) to produce

xl = [x
(l)
1 , . . . , x

(l)
n ]. Given the solution xl, we want to set the unaries in way that mini-

mizing Eλl+1
(x) produces only a slightly larger segment xl+1. This requires the energy of

Eq. 2.4 to be larger than Eq. 2.3.

To enforce these constraints for obtaining segments xl+1 which are slightly larger than

xl (the last parametric solution), we change our unaries to the following form:

α`i + λl+1β
`
i + fi(xl) (2.5)

This additional term fi(xl) guides the PMC to produce segments of all sizes. The function

needs to be designed such that it raises the source unaries, θ0
i , for superpixels which are

spatially close to the last cut. Similarly we would like to raise the sink unaries, θ1
i , for
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(a) xl overlayed on φi(xl−1) (b) xl+1 overlayed on φi(xl)

Figure 2.4: This shows the geodesic distances φi(x∗), which is used to bias unary potentials
to produce medium sized segments. The resulting cut is overlayed on each figure as a white
boundary. Note that all superpixels where x(l)

i = 1 (cut in a), the next computed φi(xl) = 0
(color in b), since now it is inside the previous cut.

superpixels which are further away. Such a scheme would ensure that the energy of solu-

tions that are slightly larger than the last cut decreases in comparison to segments which

are much larger.

We find that the geodesic distance between superpixels is a good metric to guide our

PMC. To construct fi(xl), we compute geodesics on an undirected graph with edge weights

given by image edge strength - so two superpixels sharing a weak edge have a short

geodesic distance. We precompute the n × n all-pairs shortest paths gij . In performing

PMCs, for each variable we can retrieve the minimum shortest path to any superpixel in the

last cut xl, i.e.

φi(xl) = min
j∈V : x

(l)
j =1

gij (2.6)

This is visualized in Fig. 2.4 for two consecutive cuts. We finally compute fi(xl) =

h(φi(xl)), where h(·) is a linear function, allowing us to raise source unaries if φi(xl) < τ ,

and raise sink unaries if φi(xl) > τ . We empirically tune the geodesic threshold, τ , on the

VOC’12 training set.

In our experiments, we noticed that the raw geodesic distance can be adversely affected

by leaks in object boundaries. Ideally, one would like to compute the K shortest paths

between any two superpixels, in order to avoid using erroneous boundaries. Since such a
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(b) The cuts used for computing the middle child metric

Figure 2.5: This graph illustrates the cuts involved in computing the middle child metric.
The graph construction is similar to Fig. 2.3.

scheme would be expensive to compute, we resort to dropping 50% of the weakest edges in

the superpixel graph before computing the geodesic distances. Since dropping the weakest

edges can disconnect the graph, we avoid dropping edges in the graph which belong to a

maximal spanning tree.

In practice, medium sized segments lie typically between 400 to 4,000 pixels. Our

experiments demonstrate (Fig. 2.9) that our solution is superior to all others in this regime.

2.4 How Hard is it to Obtain the Middle Child Solution?

It is useful to construct a metric on how “middle child” a particular segment is, i.e. how

difficult would it be to obtain a particular segment. Let us reconstruct the argument given in

§2.2.2. Given that we can obtain a cut through ψk1∼k1+1, and a larger cut through ψk2∼k2+1

(at two different paramaters λk1 < λk2), we want to find how hard is it to obtain a cut

through ψt∼t+1 : k1 < t < k2. This is depicted in Fig. 2.5, where we are trying to find how

hard is it to get the cut in black, given that we have both the cuts in grey: Again, our goal

is to get the middle child segment 〈1 . . . 10 . . . 0〉, where the cut passes through ψt∼t+1, and

t ∈ {1, . . . , n − 1}, given that we have a smaller and a larger cut (given in grey). Hence,

we can write the two conditions which would achieve this middle child solution :
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1. The energy of middle child solution should be less than the smaller segment at λk1:

ψt∼t+1 +
t∑

i=k1+1

(gi − λhi) < ψk1∼k1+1 +
t∑

i=k1+1

(ei + λfi) (2.7)

2. The energy of middle child solution should be less than the larger segment at λk2:

ψt∼t+1 +

k2∑
i=t+1

(ei + λfi) < ψk2∼k2+1 +

k2∑
i=t+1

(gi − λhi) (2.8)

We can combine both these conditions, to see what λ would allow us to obtain the “middle

child” cut:

ψt∼t+1 − ψk1∼k1+1 +
∑t

i=k1+1 (gi − ei)∑t
i=k1+1 (fi + hi)

< λ

<
ψk2∼k2+1 − ψt∼t+1 +

∑k2
i=t+1 (gi − ei)∑k2

i=t+1 (fi + hi)
(2.9)

If the gap between these inequalities is≤ 0 then the middle child solution is not obtainable.

We can shorten these inequalities to ζtk1 < λ < ζk2t . Let’s define a function Γk1,t,k2 =

ζtk1− ζ
k2
t . If Γk1,t,k2 < 0, there exists a λ from which we can obtain a middle child solution.

Hence, Γk1,t,k2 gives a measure of how hard it is to obtain the middle child solution.

For each ground-truth object segment, we can find a seed superpixel vs which is com-

pletely contained in the object. Using the parametric cuts produced from this seed, we can

find the last segment which is completely contained inside the ground-truth segment - let

us call this segment ck1 . Similarly, we can find the first segment which completely contains

the ground-truth segment - let us call this segment ck2 . Since we have the ground-truth, we

can find the superpixels combination which has the highest overlap with the ground-truth.

This segment can be represented by the cut ck∗ : k1 < k∗ < k2. We can compute the

hardness of getting this solution by measuring Γk1,k∗,k2 .

Amongst all the parametric min-cuts, we can find the cut ct : k1 ≤ t ≤ k2 which
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Original Image SLIC Superpixels [67] FH Superpixels [68] Our Superpixels
Figure 2.6: Illustration of superpixel results. All algorithms produce 190 ± 1 superpixels
(according to the default settings of FH [68]). SLIC [67] regularization is 0.05 (higher
regularization would lose more detail). Superpixels are colored by their mean color plus a
small random perturbation to reveal the differences among ones with similar colors. SLIC
severely lacks detail by spending the budget evenly across the image. The FH algorithm
produces many superpixels on very small textures and some superpixels are highly irregular
in shape. Our merging method largely alleviated the problems of FH, and hence can repre-
sent more meaningful parts (e.g., the bottle cap, the mouth of the person) while preserving
boundaries more effectively.

has the highest overlap with the ground-truth segment. This highest overlap can be used to

guage the performance of the algorithm.

2.5 Segment Seeds from Merging Superpixels

Careful seed placement is important for good object proposal performance. In order to

capture the majority of objects with a small number of proposals, it is preferable to place

fewer seeds in regions with more uniform color and more seeds in regions that have more

internal variation. Previously, seeds have been placed on all superpixels [28], a regular

grid [27, 35], via diversified optimization [38], etc.

We propose seeding based on a hierarchical merging of watershed superpixels. Since

watershed superpixels already combine areas with uniform color, it offers a nice starting

point for obtaining different spatial resolutions in different areas. Our merging process is

considerably faster than many optimization approaches, as only very simple operations are

involved. In principle, any merging algorithm can be used, but we propose a new super-

pixel merging algorithm. The new algorithm is similar with the widely used Felzenszwalb-

Huttenlocher (FH) algorithm [68], but with an adaptive thresholding scheme to improve
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the regularity of the superpixels in creating a hierarchy.

A basic idea, similar to FH, is that when generating superpixels of different sizes,

smaller superpixels should be merged together unless they have very distinctive appear-

ance. On the other hand, two large superpixels should not be merged when they have a

moderate difference in appearance. We implement a novel adaptive thresholding scheme

for this purpose. At each iteration, a “desired superpixel size” Sd is computed to set the

adaptive threshold. Sd is initialized to S
Nd

, where S is the number of pixels in the image

and Nd is the user-specified desired number of superpixels. In subsequent iterations, Sd is

chosen to satisfy:

Sd

(
Nd −

∑
i

I(|vi| > Sd)
)

= S −
∑

vi,|vi|>Sd

|vi| (2.10)

where |vi| represent the size of the superpixel vi, and I(·) is the indicator function. In

other words, Sd is equal to the average size of the remaining superpixels, after removing

superpixels with sizes larger than Sd. This can be solved easily via an iterative procedure.

After obtaining the desired size, the adaptive threshold Tik for superpixel vi at iteration

k is set to

Tik = T0 + kTs exp

(
−σ |vi|

Sd

)
, (2.11)

where T0 is an initial threshold and Ts is the step size. σ > 0 is the parameter governing the

tradeoff between large and small superpixels, so that Tik is higher for smaller superpixels.

The algorithm is not sensitive to T0 and Ts which can be chosen simply to be sufficiently

small. However, a larger Ts reduces computation time, hence is more desirable if there is

no adverse impact on performance.

After obtaining the adaptive threshold, the edge and color distance between each con-

nected superpixel pair are computed, and the pair is merged if both distances are smaller

than the Tik of the smaller superpixel in the pair. As the iteration advances, the threshold

becomes larger and more small superpixels are merged since their relative penalty becomes
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larger after more iterations.

Within each iteration, we compute a merge graph M , with an edge on each superpixel

pair that ought to be merged. This merge graph is complemented by the conflict graph

C, which has an edge on each superpixel pair that are incident to each other but should

not be merged. We start with the superpixel with the highest degree on M and proceed to

iteratively merge all its neighbors without conflicts. If there are conflicts, we choose the

one with the highest degree on M among the conflicting superpixels to merge.

Most merging schemes have a clean-up routine for removing small superpixels. For

our algorithm, every 5 iterations we run one “small superpixel merging” process, which is

almost the same as normal merging, with the only difference being that the color difference

from a large superpixel to a small one is only computed within a small vicinity of the latter.

This is because the large superpixel might contain very distinct colors because of merging,

and the mean color might have differed a lot from the smaller one. However if their colors

are similar in the vicinity of the smaller superpixel, then the two should be merged.

We then generate one seed at the center of each merged superpixel, which has the

capability of representing a complete picture of the scene with a moderate number of seeds.
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2.6 POISE Pseudo-code
Algorithm 1: POISE proposal generation
1 Compute boundaries B for image I using [43].
2 From B generate superpixels V = {v1, . . . , vn} using StructEdges toolbox [43].
3 For every pair of superpixels vi, vj which share a boundary, create an edge (i, j).
4 ∀(i, j) ∈ E compute pairwise potentials ψi∼j using [35], and pairwise superpixel

distances dij = 1
2
cij + 1

2
ψi∼j where cij is `2 distance between average L*a*b*

colors between superpixels vi, vj .
5 Compute n× n geodesic distance gij : 1 ≤ i, j ≤ n by dijkstra on G ′ = 〈V , E ′〉 with

edge values dij . Edge set E ′ is obtained by removing 50% of the weakest edges in
E , while ensuring G ′ is connected.

6 Initialize proposals set P := {}.
7 for each graph unary type do
8 Initialize graph proposals set P ′ := {}.
9 Find seed locations Vs ⊆ V using the method in §2.5.

10 for ∀vs ∈ Vs do
11 xl := [x1, . . . , xn] where xi =

{
1 if vi ∈ vs
0 otherwise

.

12 ∀vi compute unary parameters ei, fi, gi, hi.
13 Set seed vs source capacity θ0

s :=∞.
14 for ∀λk ∈ λ0 < λ1 < · · · < λL do

/* Get src./sink unary capacities for ∀vi */

15 for ∀vi ∈ V \ vs do
16 θ0

i := ei + λkfi
17 θ1

i := gi + (λL − λk)hi
18 φi(xl) := min

j∈V : x
(l)
j =1

gij

19 if φi(xl) < τ then
20 θ0

i := θ0
i + h(φi(xl))

21 else
22 θ1

i := θ1
i + h(φi(xl))

/* Compute max-flow/min-cut */

23 xl := arg minx

∑
i∈V (θ1

i xi + θ0
i xi)

+
∑

(i,j)∈E (ψi∼j |xi − xj|)
24 P ′ := P ′ ∪ xl

/* Filter proposals P ′ */

25 Separate connected components in P ′.
26 Discard proposals in P ′ smaller than 12 pixels.
27 If |P ′| > γ then randomly select γ proposals.
28 Discard duplicates in P ′ - proposals with 0.95 overlap are considered as

duplicates.
29 P := P ∪ P ′

30 Discard duplicates in P - proposals with 0.95 overlap are considered as duplicates.

2.7 Experiments

We conduct experiments on the validation sets of PASCAL VOC 2012 and Microsoft COCO [44].

Both have pixel-level annotations for certain object classes. There are 1, 449 images in

VOC 2012, with 3, 427 ground-truth objects in 20 categories. COCO has 40, 137 images

and 288, 397 ground-truth objects, with 80 categories that are currently available. Our algo-
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(a) VOC recall at 0.5 IoU
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(b) VOC recall at 0.7 IoU
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(c) VOC recall at 0.9 IoU
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(e) COCO recall at 0.5 IoU
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(f) COCO recall at 0.7 IoU
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(g) COCO recall at 0.9 IoU
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Figure 2.7: These graphs compare different object proposal methods based on recall against
number of proposals at three IoU thresholds. For each segment ground-truth we select the
proposal with the highest segmentation IoU. We use this to compute recall, which is the
fraction of ground-truths having a corresponding proposal with an IoU score higher than
the IoU threshold. [45] gives a similar comparison between methods for bounding box IoU.
Note, the y-scale of each graph is different.

rithm is implemented in MATLAB with many crucial functions written in C++. We utilize

StructEdges [43] for boundary detection and sticky superpixels [43] as nodes in the graph.

Pairwise terms are computed from trained boosted regressors from RIGOR [35].

We report a number of metrics that have been widely used in previous evaluations.

Suppose we want to evaluate a segment pool S = {S1, . . . , Sn} against m ground-truth

segments. First of all, each segment proposal Si ∈ S is evaluated w.r.t. each ground-truth

using the IoU overlap score

IoU(Si, GTj) =
|Si ∩GTj|
|Si ∪GTj|

, (2.12)

The best object overlap within the pool S is computed as

IoU(S, GTj) = max
i

IoU(Si, GTj)
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(a) VOC BB recall at 0.5 IoU
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(b) VOC BB recall at 0.7 IoU
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(c) VOC BB recall at 0.9 IoU
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(d) COCO BB recall at 0.5 IoU
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(e) COCO BB recall at 0.7 IoU
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Figure 2.8: These graphs compare different object proposal methods based on bounding-
box recall against number of proposals at three IoU thresholds. See Fig. 2.7 for segmenta-
tion recall against number of proposals. A similar bounding-box recall analysis is present
in [45] for PASCAL VOC 2007 test set and Microsoft COCO 2014 validation set. Note, the
y-scale of each graph is different.

We report the average best overlap (ABO), which is IoU(S, GTj) averaged over all of the

ground-truth objects in the dataset, as well as plotting recall under different IoU levels

against the number of segments in the pool |S|. In addition, we follow [45] in reporting

the average recall under all IoU levels in [0.5, 1]. It is claimed that such an average recall

measure correlates the best with downstream results on object detection [45]. Finally, we

report the mean best covering over all images in the dataset:

Cov(S,GTI) =

∑
j |GTj|IoU(S, GTj)∑

j |GTj|

where GTI denotes all ground-truth objects in the same image. Covering measures the

capability to extract larger segments and explain the scene as a whole.

We compare against recent methods SS (Selective Search) [30], SCG and MCG [32],
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Table 2.1: Detailed PASCAL VOC and COCO results of different algorithms. We consider
two scenarios: the first is to generate ∼69.0% recall (or ∼34.0% recall in case of COCO)
at an IoU threshold of 0.70; the second is the limit performance by allowing all algorithms
to generate the maximal amount of proposals. Our method, POISE is able to obtain similar
performance with much fewer proposals than the competitors.

PASCAL VOC [49] Microsoft COCO [44]

Method
Recall
at 0.70

IoU

Avg. #
Propos-

als
ABO Cov Average

Recall

Recall
at 0.70

IoU

Avg. #
Propos-

als
ABO Cov Average

Recall

∼69.0% recall at IoU threshold 0.70 ∼34.0% recall at IoU threshold 0.70
GOP (learned) [38] 0.678 1,992 0.748 0.814 0.532 0.340 7,659 0.544 0.740 0.267
RIGOR [35] 0.682 1,715 0.752 0.840 0.557 0.345 1,894 0.518 0.744 0.270
SS (quality) [30] 0.681 2,482 0.757 0.828 0.549 0.323 2,496 0.532 0.744 0.259
LPO [29] 0.682 1,237 0.759 0.822 0.544 0.331 1,470 0.567 0.734 0.267
MCG [32] 0.692 1,291 0.768 0.835 0.570 0.340 1,587 0.551 0.750 0.272
POISE 0.694 995 0.771 0.843 0.574 0.355 1,018 0.550 0.744 0.280

Limit performance at IoU threshold 0.70 Limit performance at IoU threshold 0.70
GOP (learned) [38] 0.722 7,609 0.769 0.829 0.566 0.340 7,659 0.544 0.740 0.267
RIGOR [35] 0.709 2,411 0.777 0.844 0.583 0.384 2,642 0.568 0.753 0.300
SS (quality) [30] 0.772 10,641 0.801 0.840 0.618 0.456 15,950 0.631 0.770 0.355
LPO [29] 0.776 4,233 0.805 0.859 0.626 0.406 4,146 0.602 0.769 0.315
MCG [32] 0.772 5,157 0.808 0.850 0.635 0.415 5,376 0.600 0.770 0.325
POISE 0.778 2,650 0.811 0.864 0.636 0.435 2,959 0.617 0.774 0.339

GOP [38], RIGOR [35] as well as the very recent LPO approach [29].

Table 2.1 shows detailed performance of different algorithms under two settings: one

where all algorithms generate about 69.0% recall at an IoU threshold of 0.70; and the sec-

ond where algorithms are allowed to generate maximal number of proposals. One can see

that our method generates much fewer proposals in any of the two scenarios while having

comparable performance to the best competitors. Fig. 2.7a-2.7d shows the plots of segment

recall at different overlap thresholds on the VOC dataset. Likewise, Fig. 2.7e-2.7h shows

the results on the COCO dataset. We use linear instead of log scale [45, 32] to highlight

that our method needs far fewer proposals to reach high recall. It can be seen that our

method consistently outperforms the competitors when the number of proposals is more

than 700, which is the range of settings most likely to be chosen users of proposal algo-

rithms. POISE is superior to most other superpixel aggregation and edge-based approaches

because it seeks solutions from a global energy function which solves the middle child

problem.

Fig. 2.9 shows the IoU score broken down in terms of the size of the ground-truth

31



GT segmentation size (# pixels)

10 2 10 3 10 4 10 5

Io
U

 (
O

v
e

rl
a

p
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) PASCAL VOC 2012 validation

GT segmentation size (# pixels)

10 2 10 3 10 4 10 5

Io
U

 (
O

v
e

rl
a

p
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GOP (baseline) [23]

GOP (learned) [23]

MCG [30]

SCG [30]

SS (fast) [32]

SS (quality) [32]

LPO [24]

RIGOR [19]

POISE (our method)

(b) Microsoft COCO 2014 validation

Average # Proposals

1000 2000 3000 4000 5000 6000 7000 8000

A
v
e

ra
g

e
 R

e
c
a

ll 
[0

.5
, 

1
] 

Io
U

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Average # Proposals

1000 2000 3000 4000 5000 6000 7000 8000

A
v
e

ra
g

e
 R

e
c
a

ll 
[0

.5
, 

1
] 

Io
U

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Average # Proposals

1000 2000 3000 4000 5000 6000 7000 8000

A
v
e

ra
g

e
 R

e
c
a

ll 
[0

.5
, 

1
] 

Io
U

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(c) VOC average recall small/medium/large objects

Average # Proposals

1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 R

e
c
a

ll 
[0

.5
, 

1
] 

Io
U

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Average # Proposals

1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 R

e
c
a

ll 
[0

.5
, 

1
] 

Io
U

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Average # Proposals

1000 2000 3000 4000 5000 6000 7000 8000 9000

A
v
e

ra
g

e
 R

e
c
a

ll 
[0

.5
, 

1
] 

Io
U

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(d) COCO average recall small/medium/large objects

Figure 2.9: IoU comparison of various methods at different pixel sizes for PASCAL VOC
2012 validation and Microsoft COCO 2014 validation segmentation ground-truths, at
∼1, 000 # proposals.

segment. It can be seen that our method significantly outperforms all other approaches

in objects with the sizes from 400 to 4, 000 pixels. This shows the effectiveness of our

solution to the middle child problem, as well as the benefit of better seed placement. The

only regime in which we are slightly worse than RIGOR is when the segment size grows

to more than 60, 000 pixels, which is approaching the size of the entire image for a typical

PASCAL VOC image. Even at that ground-truth size we still outperform all of the other

competitors.

2.7.1 Ablation Study

This chapter has two contributions: a solution to the middle child problem; and a superpixel

seeds generation method. In this section we will describe the results of an ablation study

to identify the quantitative contribution of each of these two components. We compare

four different variants of the algorithm: (1) “w/o midchild/new seeds” where neither the
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middle child solution in §2.3 or the new seeds in §2.5 are used; (2) “w/o new seeds, w/

midchild” where we use the geodesics middle child solution in §2.3, but not §2.5; (3) “w/o

midchild, w/ new seeds” where we use the new seeds in §2.5, but not §2.3; and (4) the

POISE method corresponding to the full algorithm in §2.3 and §2.5.
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Figure 2.10: These graphs show the ablation study for our algorithm. We compare three
different schemes, as given in §2.7.1. This analysis is similar to Fig. 2.7, where we show
recalls of each scheme against different number of proposals it generated. We vary the
number of seeds to generate results at different number of proposals. We also show the
average recall between [0.5, 1] IoU for all schemes in d.

We generate results for all these variants individually over the complete validation set

for PASCAL VOC 2012. The average recall results are plotted in Fig. 2.10. The general

trend observable from these results is that the improved seeds (w/o midchild, w/ new seeds)

help to move the graph left by reducing the number of proposals to reach the same recall.

This is the result of requiring fewer number of seeds to localize most objects in the scene.

On the other hand, the middle child solution (w/o new seeds, w/ midchild) moves the graph

upward, indicating that adjusting the unaries by geodesics helps to obtain more accurate

segmentations. Combining both improvements gives POISE the ability to increase recall

while using fewer proposals.

2.8 Conclusion

In this chapter we identified and solved the middle child problem— namely how to use

parametric min-cuts to generate medium-sized segments for object proposals. We demon-

strated that the problem arises from the intrinsic structure of the standard energy landscape
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and cannot be solved through parameter tuning. Our solution is an adaptive energy function

which biases the min-cut solution in a sequence of proposals so that the next segment is

close to the previous one from the standpoint of geodesic distance. In addition, we intro-

duced a novel method for generating proposal seeds which is more effective than previous

methods for small numbers of seeds. The resulting method, known as POISE (for “Pro-

posals for Objects from Improved Seeds and Energies”), is demonstrated to outperform all

competing methods in generating high-quality segments with a small proposal pool on the

PASCAL VOC and Microsoft COCO datasets.
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Image Ground-truth Best proposals Image Ground-truth Best proposals

Low ABO examples

Figure 2.11: Qualitative evaluation on PASCAL VOC 2012 [49] validation set. For each
image we display the ground-truth and the proposals which obtain the best segmentation
IoU score. The IoU score is displayed on top of each best proposal. Each image also
displays the average best overlap (ABO), and the total number of proposals generated for
that image. The results here are generated when POISE is set to propose 1000 objects on
average.
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Image Ground-truth Best proposals Image Ground-truth Best proposals

Low ABO examples

Figure 2.12: Qualitative evaluation on Microsoft COCO 2014 [44] validation set. See
caption in Fig. 2.11 for more details.
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Image Ground-truth POISE RIGOR [35] MCG [32] LPO [29] Selective Search [30]

Figure 2.13: Qualitative comparisons against four different methods [35, 32, 29, 30]. The
images are from PASCAL VOC 2012 [49] validation set and Microsoft COCO 2014 [44]
validation set. These proposals were generated when each method was proposing 1000
objects on average.
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Chapter 3

Fully Convolutional Video Object

Detection

In this chapter I would introduce a pipeline to generate space-time object proposals for an

unconstrained video stream. As an application, I would demonstrate their use in object

detection. More formally, this chapter would offer a solution to the following problem:

Given a video stream, generate space-time bounding boxes which have a high

chance of localizing objects in the scene. Furthermore, classify each proposed

object as one of the predefined set of categories, and track the object on-line

over the length of the video.

In short, the problem asks for localizing object in a video, and demonstrating their use

for detection and tracking in a stream of video. Note that since the problem supplies a

continuous stream of frames, any long term batch processing would be infeasible. An

effective method might observe a small number of frames for inference, but in this setting

it would not be possible for a method to look at hundreds of frames before giving an output.

Moreover batch methods which require looking at the complete video before giving the

final output [69, 70, 71, 72] would be inappropriate for this problem. Also an algorithm

would need to link results (detections) from previous steps to the current inference. Typical
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examples for this technique generate proposals every frame, and attempt to link them to

spatio-temporal object proposals resident in memory [6, 73].

Image object detection is a problem which has received wide interest in recent years.

This has resulted in many non-deep [47, 74] and deep models [10, 5, 23] aiming to improve

accuracy and speed. This chapter would explore whether these ideas can be extended to

locate objects in a fixed set of frames by using simple 3D convolutional extensions to cur-

rent detection pipelines. More concretely, this chapter would propose a supervised pipeline

for video object detection — the problem of locating, classifying, and tracking all objects

throughout its lifetime in a streaming video. The object categories that the algorithm would

be trained and tested on would be limited by the annotations in the dataset (see §3.2). First,

a fully convolutional architecture would be described in §3.3 to localize objects in time.

The training would proceed by minimizing a loss function which would encourage the

method to locate and consistently classify objects in time given supervision over fixed set

of categories (see §3.4). Once trained, this model would be used for inference on a fixed

number of frames (details in 3.6). This pipeline would be evaluated on its ability to recall

and classify objects in a fixed time window (§3.7.2) and to track these objects over the

complete length of the video (§3.8.7).

3.1 Related Works

3.1.1 Video Object Proposals

Following the lead of image object proposal algorithms, recently many techniques have

been proposed to generate proposals in video. Unlike our proposed convnet architecture,

most of the techniques are unsupervised, and start by inferring object localizations in each

frame before stitching them temporally. Our proposed approach infers spatio-temporal

object locations over a set of frames in a single forward pass. Proposals from different time

windows are linked by simple bipartite matching.
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Rather than directly inferring spatio-temporal proposals, most methods generate video

proposals by linking image proposals across video frames. Lee et al. [69] begins by gener-

ating object proposals every frame using [36], and scoring them by appearance and motion

cues. High scoring proposals are spectrally clustered to produce sets of possible foreground

objects. Shape and color models are created for each foreground set, and used to gener-

ate foreground likelihood maps. These maps are used as unary potentials for segmenting

objects in a space-time MRF.

Banica et al. [70] take a similar approach by temporally linking CPMC proposals [27].

Each hypothesis is ranked using saliency, flow, and image proposal matching scores. These

hypothesis are refined by running binary graph-cut on every frame for each hypothesis.

Li et al. [6] offer an on-line unsupervised method to generate video segment proposals.

Like [70], it first generates a pool of CPMC proposals in the current frame, and computes

appearance features for each segment. Using the appearance model, a proposal is asso-

ciated to an object track using a least squares tracking formulation. Finally it performs

composite statistical inference for refining segmentations of longer tracks. Wu et al. [73]

builds on this technique by adding ability to track objects undergoing complete occlusion.

Similar to [6, 73], Fragkiadaki et al. [71] also uses optical flow to delineate object

boundaries for generating better image proposals [38]. This method was the first to employ

a convnet to help generate video proposals — in their pipeline a convnet is used to filter

static unimportant objects. The remaining moving proposals are linked temporally by com-

puting pairwise trajectory affinities [75], and the final confidence rank for video proposals

is an aggregation of convnet scores.

Sharir and Tuytelaar [72] is similar to our proposed approach in generating proposals

for fixed size time windows. Though, unlike our approach, it generates spatio-temporal

proposals in each time window by linking together image object proposals [36]. These

proposals are then linked across frames by finding a minimal distance path based on color

histogram intersection. The hypotheses generated are then used as high order potentials
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in a CRF, where inference helps produce better segmentations. Proposals across temporal

windows are combined by finding high overlaps on adjacent frames. All video proposals

are ranked based on motion and objectness scores given by [36]. In contrast, our model

generates proposals by asking the network to predict an objectness score. Since the ob-

jectness score is trained discriminatively, it produces a small number of proposals per time

window (20-50), which helps avoid simple association mistakes.

Xiao and Lee et al. [76] proceeds by using high scoring box proposals [57] and iter-

atively refining models to detect harder instances of the object. These image proposals

are clustered with other temporally non-adjacent proposals, and clusters are selected based

on distinct appearances. Detectors are trained for each cluster group to iteratively add

proposals from missing frames in a cluster. Finally these box proposals are converted to

segmentations using a grab-cut scheme, where features are generated through a hypercol-

umn representation [77]. Like most other methods [69, 70, 71, 72], this algorithm also

requires multiple passes over all frames to generate video proposals.

Another set of methods aim to generate spatio-temporal proposals by iteratively clus-

tering pixels into supervoxels. Van den Bergh et al. [78] introduces one such method,

which extends the SEED superpixel algorithm [79] to generate supervoxels in an on-line

setting. It is an energy minimization approach where supervoxels are encouraged to have

homogeneous color. By introducing noise in their optimization they can generate multiple

partitionings — these multiple results tend to agree at true object boundaries, and hence

are used for computing an objectness score. Space-time proposals are made by tracking

windows which align well with supervoxel boundaries. Oneata et al. [80] generate super-

voxels by hierarchically merging SLIC superpixels [67]. It generates proposals by starting

with a seed supervoxel, and then iteratively adding supervoxels probabilistically (similar to

Randomized Prim’s algorithm [81]), where the likelihood is learned by a logistic discrim-

inant classifier based on color, flow, size, and compactness features. Unlike supervoxel

based methods, our proposed method does not need to generate a mid-level representations
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in order to generate object localizations.

3.1.2 Video Detection

There has been growing interest in combined object detection and tracking pipelines since

the introduction of the ImageNet video detection dataset [12]. Both the video detection

benchmark/challenge and the availability of a large dataset has encouraged research in su-

pervised learning for object recognition in videos. Yet, most of the methods introduced are

an amalgam of algorithms, which typically associate and smooth frame level object detec-

tor responses. In contrast the proposed pipeline generates spatio-temporal object detections

in a single convnet over fixed time windows, which are linked together across different time

windows using simple bipartite matching.

Kang et al. [82] aims to generate better image object detections by propagating evidence

from other frames in the video. Initially they generate proposals every frame which are

filtered by RCNN [10] and classified by GoogLeNet [51]. To reduce false negatives, each

high confidence detection is tracked forward and backward in time by a fully convolutional

network [83]. Temporal 1D convolution over detection and tracking scores is trained to

predict recall above 0.5 with GT. Compared to a still image detector, the performance of this

method rises from 45.3% to 47.5% mean AP by using only 1/38 proposals. Kang et al. [84]

improve this method by combining results from multiple image detectors, suppressing low

confidence classes, and propagating detections using optical flow. This was the winning

entry in ImageNet Vid challenge in 2015 (compared to methods not using additional data),

with a mean AP of 73.8% on the validation set [12]. Even though both methods generate

video object detections, the ImageNet video benchmark in 2015 was limited to frame level

detection performance. In 2016 a video detection metric was introduced. The challenge

was won by a method employing an on-line multi-object tracking framework using frame-

level detections from [84]. One key element missing from these methods is the ability

to take temporal information into account for classification (a large number of objects are
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mis-classified as background by in image object detectors [23]). Our proposed pipeline

would naturally incorporate information from multiple frames before inferring a class for

the object.

Kang et al. [85] is more similar to our approach in using space-time anchors to generate

object localizations. It first generates object proposals using RPN [5] over a reference

frame, and then it pools features from the same spatial location over multiple frames. It

uses features these multi-frame pooled features to train a regressor to find the movement

of the object lying in the receptive field of this “spatial anchor.” It pools features from

boxes resulting from the movement prediction in an encoder-decoder LSTM to classify

the object into one of the 30 ImageNet VID categories. The major difference this work

has to our technique is in how their prior anchor locations are used to predict locations

for an object. Our 3D convolutional network is discriminatively trained to infer whether

a certain space-time anchor lies over an object, and if so, what category does the object

belong to. Unlike [85] which has two separate networks for predicting localizations and

classes, our pipeline is a single network which produces detections by exploiting space-

time information in a short time window.

Han et al. [86] introduces a simple method for improving non-maximal suppression

of object detectors using information available in video. After high overlap detections are

linked in adjacent frames, the method prunes image detection results by selecting tempo-

rally linked bounding boxes which give the highest aggregate confidence scores. Since

our proposed method would be generating space-time proposals, NMS can naturally run

spatio-temporally.

Recently, Drayer and Brox [87] introduced a video object detection and segmentation

method. It first generates a set of proposals [57] classified by RCNN [10], which are then

linked by dynamic programming on a graph where links are formed by similarity between

proposal boxes. Each linked set of proposals is spatio-temporally segmented with the help

of appearance and motion cues extracted from bounding boxes. Like other methods, this
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also locates objects per frame, requiring explicitly smoothing inferences across time —

whereas in our proposed model, temporal smoothing occurs as the model is trained to

minimize the localization loss over multiple frames simultaneously.

Feichtenhofer et al. [88] proposes a unified approach to detect and track objects. The

method extends R-FCN [89]1 by adding a tracking loss which aims to regress object co-

ordinates across frames. It makes use of the idea of learnable correlation filters [90, 91]

between a set of frames to find how each object moves over time. Unlike our approach, all

frames are passed through a ResNet-101 [92] to obtain a per frame convolutional feature

map. On the other hand, a 3D convolutional network which takes multiple frames as input

could build flow-like or correlation filters as part of the bottom-up process.

Liu and Zhu [93] propose a CNN interlaced with LSTM for integrating temporal infor-

mation for video object detection. Multiple convolutional layers are tasked with generating

feature maps which are fused with other feature maps transformed by a recurrent network

from previous frames. Like our technique, their model is also based on the SSD detec-

tion architecture [14] - albeit they make use of Mobilenet-SSD [94] to make the technique

applicable to computation constrained settings.

The winning entry from 2017 ImageNet VID challenge [95] makes use of optical flow

to aggregate features from multiple frames. They make use of video recognition feature ag-

gregation ideas in [96] to generate deep features from adjacent sampled frames, and prop-

agating them using optical flow. Once the features are propagated via flow, features from

multiple frames are combined according to the cosine similarity to features in the reference

frame. They show that feature aggregation by flow guidance gives a boost of 2-4 mAP

points on ImageNet VID validation. Similar to [96] is the MemNet [97] approach which

produces detections using current frame’s feature representation, which is aggregated with

the warped feature representations accumulated from previous frames. The warping, like

1Region-based Fully Convolutional Networks [89] pool responses from position-sensitive feature maps
for detecting objects. Since it is a data-driven process, the pooling is designed in a way to encourage certain
feature maps to respond to particular locations relative to an object (top-left, right, etc.). This results in
relatively translation-equivariant object features, while also maintaining some position sensitive information.
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in [96], is performed using optical flow. Unlike these methods, which require explicit com-

putation of flow, our 3D convolutional network can learn to devote filters to discriminate

between different object motions and aggregate features across frames.

More recently the idea of deformable convolution [98] has been employed for video ob-

ject detection [99]. Bertasius et al. uses deformable convolutions to condition the receptive

field on adjacent frames for improving the feature representation for detection on a refer-

ence frame. They demonstrate a performance gain of around 2.7 mAP when compared to a

single frame baseline. Their backbone convolutional network is based on ResNet-101 [92]

and R-FCN [89]. The model is trained to deform feature maps from multiple adjacent

frames and then combine them into a single feature map by weighing them according to

their cosine distance to the reference frame’s feature map. This has two advantages over

our method: (1) during inference time, it can arbitrarily use more or less frames than what

the network was trained for; also (2) deformable convolution allows the method to pool

features conceptually in the direction of the motion of the object. But unlike our approach,

based on 3D convolutions, temporal information in this method is collapsed by a simple

feature aggregation technique. This makes the model incapabale of constructing features

which lie at different temporal scales.

3.1.3 Action and Pose Detection

Even though action and pose detection aim to more fine-grained classification (inference

on the pose or motion of humans), one can design solutions to these problems with object

detection like architectures. I will discuss two methods here, one for each problem, whose

architecture designs are quite similar to ours.

Hou et al. [100] proposes a 3D convolutional network for the problem of action de-

tection. The goal of this method to localize humans performing different actions, while

keeping track of them over the length of the video. They too divide the video into T size

clips, where each clip generates action proposals - and these are stitched together to create
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proposals over the length of the video. This approach first collapses all the temporal dimen-

sions to first localize actions in space. Then it predicts the movement in time by pooling

features from the shallower part of the network which contains all frame level information.

There are 3 major differences to our approach: (1) our anchors predict localizations for

all the frames in the clip in the first stage, whereas [100] first predicts spatial locations

before predicting temporal movement; (2) [100] uses ROI pooling in space-time, whereas

our architecture avoids pooling by using an SSD [14] style model; and (3) we predict both

localizations and classifications from the same prediction layer, and [100] performs classi-

fication once it has features from all the clips of the proposal.

Girdhar et al. [101] also proposes a 3D convolutional network where the goal is track

keypoints for each human over the video. It is more similar to our approach than [100]

since it makes localization predictions by an anchor box which spans spatio-temporally.

But, like [100], they also use a pooling mechanism before making final predictions for

keypoint locations and bounding boxes. Another difference in our approach is that we

collapse all temporal dimensions before the prediction layer, whereas the base model [101]

outputs a feature map of the same temporal size as the input. They also only demonstrate

results with a network trained on 3 frame inputs, whereas we show results with networks

trained with different temporal input sizes.

3.1.4 Motion-based Features

Part of this proposed work aims to demonstrate that supervised feature learning can be use-

ful for object recognition in video. The aim of the proposed network would be to learn

features for producing high quality, temporally consistent localizations, and classifications.

The pipeline would employ 3D convolutional filters in order to learn more generic video

representations, like moving occlusion boundaries and T-junctions. This would be anal-

ogous to first two layers of a network learning edges and corners when trained on im-

ages [102]. Several video recognition problems have successfully used spatio-temporal
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feature learning. Action recognition has been the key application of deep networks tailored

for videos. Some of these methods have shown competitive performance using convolu-

tional RBM architectures [103, 104] or ISA [105] which learn spatio-temporal features

from un-labeled data. Other action recognition employ 3D convolutions [106, 107, 108],

and specialized CNNs built on optical flow input [109]. There have been several other

problems in video where feature learning has been experimented with, including video

classification [110, 111], and optical flow prediction [112, 113].

C3D [110] is noteworthy since it informs some of the choices we make for constructing

3D convolutional architectures. It did a detailed study using a VGG derivative with 3D con-

volutions, showing excellent performance on action recognition and other video tasks. This

study was one of the first to show the efficacy of using 3× 3× 3 convolutions for extract-

ing temporal information. Tran et al. [114] builds on C3D by introducing 3D convolution

variants of ResNet-18 and ResNet-34 [92]. Taking lessons from these works, we construct

different 3D convolution variants for ResNet-34 for the task of video object detection. Re-

cently, Carreira and Zisserman [115] did a detailed study on what different architectures

work best for action recognition. They showed that when using an Inception [51] model,

having a two stream architecture (on flow and RGB), both with 3D convolutions, works

best for action recognition. We make use of their technique for inflating 2D filters for

initialize 3D convolutions in several of our experiments.

Amongst the recent non-learning based works on video features, Park et al. [116] re-

quires mention because the problems it discusses are relevant for object localization and

detection. More concretely, [116] discusses conditions that can arise in video which af-

fect the generation of motion features for object detection. It generates object features

after factoring out camera motion and global object motion, which they apply to pedestrian

detection using a HOG-SVM detector [47].
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Figure 3.1: Each bar graph shows the fraction of videos in each dataset which have a set
number of categories, or the number of annotated objects lie in a particular range. [6, 73]

3.2 Training Data

The video proposal generation and detection pipeline in this chapter would be built using

convnet. The features for this convnet would be learned using supervision — hence it is

important to have a discussion about the available datasets.

Table 3.1 shows five datasets where object instance level annotation is given for all

frames. The table shows important metrics like the total number of objects and the av-

erage track length for an object. The metric for ‘average number of objects per video’

helps us gauge what datasets would be useful for testing algorithms in cluttered scenes.

MOT [117, 118] clearly takes the lead here, but is hindered by the low number of object

categories. A more detailed analysis is given in Fig. 3.1b, which additionally shows that

Virtual KITTI [119] also has a variety of cluttered scenes. Moreover, datasets which have

wider variety of object categories per video can be potentially used to learn co-occurrence

statistics, which are shown to be useful for object detection. These statistics can be viewed

in detail in Fig. 3.1a, which shows that KITTI has the most variability in the number of

categories per video.

All datasets, except LabelMe Video [120], were annotated with a fixed set of categories.
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Table 3.1: Different video datasets where object instance level annotation is available.
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Imagenet Vid [12] 4417 294.0 2 005 418 9220 217.5 2.09 1.54 30 23 1.13
Training 3862 290.6 1 731 913 7911 218.9 2.05 1.54 30 23 1.13
Validation 555 317.3 273 505 1309 208.9 2.36 1.55 30 23 1.12

LabelMe Video [120] 518 262.0 182 382 977 186.7 1.89 1.34 15 6 0.88
MOT [117, 118]2 12 642.9 159 784 883 181.0 73.58 20.71 4 1 1.75
KITTI [121] 21 381.3 44 834 867 51.7 41.29 5.60 7 1 2.52
Virtual KITTI [119] 50 425.2 67 363 2152 31.3 43.04 3.17 1 0 1.00
All 5018 293.2 2 459 766 14 098 174.5 2.81 1.67 34 25 1.11

Table 3.2: Number of objects (tracks) for each category across different video datasets.
The × marker indicates that it has been verified that this category of objects exists in the
dataset, but is not annotated.
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LabelMe Video [120] 4 25 13 385 45 11 3 6 31 0 0 4 0 12 0 0 47
MOT [117, 118]?? 0 19 × 32 1 × × 0 0 0 0 0 0 0 0 0 0

KITTI [121] 0 ×3 5 636 2 1 12 10 0 0 0 0 0 0 0 0 0
Virtual KITTI [119] 0 0 0 2152 0 0 0 0 0 0 0 0 0 0 0 0 0
All 610 535 187 4656 358 12 216 33 304 350 189 669 296 657 229 291 47
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Imagenet Vid [12] 162 189 127 233 143 114 344 × 125 195 188 108 181 78 152 312 384

Training 143 168 111 213 134 102 272 × 112 187 179 96 152 67 135 264 355
Validation 19 21 16 20 9 12 72 × 13 8 9 12 29 11 17 48 29

LabelMe Video [120] 0 0 0 0 0 0 0 389 0 0 0 0 1 0 1 0 0
MOT [117, 118]?? 0 0 0 0 0 0 0 831 0 0 0 0 0 0 0 0 0
KITTI [121] 0 0 0 0 0 0 0 201 0 0 0 0 0 0 0 0 0
Virtual KITTI [119] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
All 162 189 127 233 143 114 344 1421 125 195 189 108 182 78 153 312 384

For LabelMe Video [120] it was left to the discretion of the annotator to mark whichever

objects, using whatever label names. It is possible to combine all the datasets to train a

model, but that would require significant effort in normalizing the categories across differ-

ent datasets. For instance KITTI [121] separates trucks from cars and buses, but ImageNet

VID [12] does not.
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For our study, it is important to have a large variety of categories with reliable tempo-

rally dense annotations. For this reason we choose ImageNet Vid [12] for all our experi-

ments. The final set of categories, and their counts per dataset are given in Table 3.2. Since

motion is an important aspect of this chapter, both Table 3.1 and Table 3.2 make a distinc-

tion between deformable and non-deformable object categories (note that all categories can

move nevertheless both due to object and camera motion). Note that we are using the 2015

release for ImageNet VID, both for training and validation, in order to keep our results

comparable to other works on video object detection.

3.3 Architecture

The proposed architecture produces video object detection predictions using a convolu-

tional network. The input to the network is T frames of the video, where all frames are

resized to fixed resolution. The ouput is a fixed number of video object detections, where

each detection is specified by 4T numbers giving the extent of the object’s bounding box

over T frames. In addition, each prediction is accompanied with a likelihood of it be-

longing to one of M categories or the background. The feed forward stage is followed by

non-maximum suppression to produce the final set detections.

The same model can be easily adapted to produce object proposals over T frames, rather

than predicting a category label. This would be done by replacing the classification layer

with a node that produces an objectness score, which would indicate the likelihood of the

proposal belonging to an actual object.

The neural network architecture, depicted in Fig. 3.2, is composed of a base network

which produces a feature map of size 512×1×38×38 (where 38×38 specifies the spatial

resolution, and a temporal resolution of 1). The base network is constructed in a way to

collapse all temporal information to a single size before it reaches the first prediction layer.

We build our architecture this way because (1) empirically we see that any late fusion, i.e.
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Figure 3.2: This schematic shows the video detection architecture based on a ResNet-
34 [92] backbone model. The pipeline shown finds detections at different locations, scales,
and aspect ratios in 7 frames of the input video, but it can consume different number of
frames by changing the number of 3D convolutions in the backbone architecture. Every
location in the displayed feature map produces a fixed number of detection predictions.
The idea of predicting bounding boxes at locations on multiple feature maps is inspired by
Single Shot MultiBox Detector [14].

maintaining all temporal information till the prediction does not increase the accuracy; and

(2) collapsing temporal information in the base network makes it feasible to train multi-

frame networks without drastically reducing the batch size. This feature map is passed

through a 2D convolution and ReLU non-linearity for producing a 256 × 1 × 38 × 38

feature maps. Each of the 1444 locations on this feature map produces N1 video proposal

predictions in its receptive field. In the proposed architecture N1 = 4, where each of these

predictions aims to produce a moving bounding box close to a preset space-time anchor.

The spatial size of each space-time anchor is proportionate to the size of the receptive field

at the current feature map. The idea of anchors was popularized for image detection by

Faster RCNN [5], and here it is extended to localization of objects in video. The N1 = 4

space-time anchors are rectangular tubes in time of different aspect ratios and sizes. These

aspect ratios and sizes are learned in a data-driven way from the ImageNet Vid training

dataset. Space-time anchors are further discussed in §3.3.1.
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At this point, the architecture has a single output prediction feature map produced by

successive non-linear, pooling, and convolution operations. This mechanism is repeated

5 more times, each time producing a feature map of a different size. Hence, there are 6

feature maps, where each location produces Ni video proposals at feature map i, resulting

in a total of 8732 video proposal predictions. As the network gets deeper, the receptive field

of the feature map gets larger - hence, each location in smaller feature maps are trained to

predict proposals for larger objects in the T frame sequence. The last 1 × 1 feature map

is trained to predict either a large object spanning the whole video, or an object moving

across the whole video extent in T frames. The N6 = 4 predictions associated with the

last feature map are shown in the bottom half of Fig. 3.2. The idea of using multiple

locations on feature maps to generate bounding box proposals has been explored recently

on images [21, 5, 11]. The Single Shot MultiBox Detector [14] extended that idea to use

feature maps at different depths in the network to produce predictions of different scales.

To the best of my knowledge this is the first extension of these ideas to video.

The network is run independently over every consecutive non-overlapping set of T

frames, producing detections over each time window. Of course, since an object can last

beyond a single time window seen by the network, detections need to be matched across

time windows. Matching detections across multiple time windows would correspond to

tracking the object over its lifetime. We perform simple bipartite matching on each avail-

able object category individually to produce long term tracks.

For future work, it might be fruitful to use the fixed size feature representation for each

object for finding a matching score between objects across time windows. It would be

feasible to train for a loss which enforces that the inner product between fixed sized feature

representations of the same object across different time windows to be small.

Since the network is responsible for producing predictions over multiple frames, it gen-

erates spatio-temporal localization of objects in a unified pipeline which is end-to-end train-

able. This approach for learning to generate short tracklets and detect objects is a departure

52



from recent video detection approaches where typically an image object detector is fol-

lowed by a tracking pipeline [82, 122, 84, 86]. These approaches aim to detect, track

objects and smooth predictions by an amalgam of algorithms.

3.3.1 Space-time Anchors

As discussed in §3.3, space-time anchors are the spatio-temporal extension of default bound-

ing boxes used in Faster RCNN [5] and Single Shot Multibox Detector [14]. Anchors are

employed for detection so that individual locations on a feature map can be used to localize

multiple objects at different aspect ratios and scales. If not used, each feature map loca-

tion can only be trained to regress a single prediction. This would be a harder learning

problem, albeit having more training data (with higher variability) for each output predic-

tion. In other words, anchors make localization learning easier by reducing the variations

in scale and aspect ratio for each prediction. Anchors can also be seen as dividing the

learning problem of detecting objects over different predictors - helping reduce the sample

variability that each predictor has to contend with. Experiments on Faster RCNN [5] show

that mAP rises by 3% when using 3 anchors of different aspect ratios, rather than a single

anchor. mAP rises by another 1.1% when using 3 scales for each anchor, i.e. a total of

9 anchors. The notion of anchors is derived from pre convnet detection pipelines, where

filters at varying scales and aspect ratios were typically used in a sliding window fashion.

For instance, DPM [47] pools features at multiple pyramid levels and aspect ratios in order

to detect objects of different shapes at varying distances.

As discussed in §3.4, by using space-time anchors, each prediction regresses an offset

from an anchor it was trained for, rather than directly regressing to a ground-truth bounding

box. Space-time anchors in this architecture only vary in aspect ratio, since scale is handled

by having prediction layers at multiple convolutional feature maps with varying receptive

field.

As mentioned before, the anchor sizes and aspect ratios are chosen in a data-driven way
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before training begins. Finding anchors in a data-driven way has been known to increase

the performance of detection models [123]. We take all bounding box annotations (height

and width of objects) from ImageNet Vid training dataset, and divide them into 6 groups

by the bounding box area. The division is done in a way to split the range of areas equally

across all groups. The anchors generated for each group would be used for a particular

prediction feature map. After collecting all the bounding boxes for a certain area group, we

run k-means to find anchor sizes / aspect ratios for the respective prediction layer. Using 4

to 6 anchors per prediction layers ensures that around 94% of the objects have an overlap

of above 0.5 with some space-time anchor.

In images, objects can appear at different aspect ratios and scales. In video, objects,

in addition, can also move in different directions. Varying the global motion of an object

would dramatically change filter responses. This suggests that some global object motion

needs to be estimated before finding bounding box offsets every frame. Currently the ar-

chitecture only uses rectangular space-time anchors, where the hope is that an object does

not drift too far from the anchor location in T frames. These anchors, of course, might be

sub-optimal for objects which move from one corner to another in T frames. Moreover,

motion would introduce another source of variability in the training data for a single anchor,

making it a harder learning problem. Also, once the model has learned to track objects go-

ing in a certain direction, it would be favorable if the model generalizes to tracking similar

objects moving in other directions. If a model is trained to track a person moving left, it

should be able to infer objects moving right. Some possible solutions we can explore in the

future are:

1. Perhaps, the simplest solution is some temporal data augmentation. Currently, we

randomly augment samples with horizontal flips, which would move the object in the

opposite horizontal direction. Furthermore, sub-sampling frames at a fixed rate (for

instance, selecting every second frame) would simulate samples with faster motion.

2. It might be possible to first estimate a flow field in convnet [112] which would give
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dominant movement direction in each receptive field, helping decide the dominant

motion of an anchor, before a prediction is made relative to it.

3. Another possibility is to first regress a direction vector (a starting and ending location

in the first and last frame respectively) giving the general motion of the object, which

could be used to regress bounding box offsets from linear motion.

4. If each frame in the video was moved to keep the object of interest centered, per-

haps the network would learn more discriminative filters. This can be immitated by

shifting the frames linearly in a single direction, and then only training with sam-

ples which closely match a spatio-temporally rectangular anchor. For instance, by

moving every subsequent input frame 1 pixel south, 1 pixel east, it would center an

object linearly moving 1 pixel north, 1 pixel west per frame. This procedure would be

repeated using multiple preset directions, ensuring that the model only sees objects

with most of its dominant motion eliminated. This scheme can be seen as the tem-

poral counterpart of scale-space pyramid used for input to detectors. For instance,

Viola Jones [46] applies the detector at 12 re-scaled versions of the input image,

enabling it to find faces of different sizes. This temporal frame movement scheme

should similarly allow finding objects moving in different directions.

5. Another approach is to learn deformable convolutions [98] such that the filters follow

the motion of each individual object. This can be done in a way where the network

learns to predict a 2D offset for each 3 × 3 spatial slice of each 3 × 3 × 3 filter in

the network. To allow for greater flexibility in the model, we can learn a 3D offset,

where each filter slice can also move in time. This would allow the network to learn

the same filter for slow or fast moving objects. An implementation of these ideas

might help build time-equivariant feature representations in a convolutional neural

network for various video tasks.

Currently, our algorithm uses data augmentation as given in solution (1), which helps in-
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crease the number of samples seen by each anchor, and also possibly deal with linear global

motion patterns.

3.4 Training

Before describing the training scheme in §3.5.2, details about all loss functions is given.

Each video in ImageNet Vid can have multiple object annotations. Each video V has a set

of objects {o1∗, . . . ,om∗}, and each object oi∗ is annotated with a list of bounding boxes.

Each bounding box b
[t]
i∗ =

[
x

[t]
i∗ , y

[t]
i∗ , x

[t]
i∗ + w

[t]
i∗ − 1, y

[t]
i∗ + h

[t]
i∗ − 1

]
, where

(
x

[t]
i∗ , y

[t]
i∗

)
is the top-left corner of the bounding box, and w[t]

i∗ , h
[t]
i∗ denote the width and height of the

object at frame t. The ground-truth of object oi∗ is a concatenation of all its annotations,

and will be represented as
[
b

[qi]
i∗ , . . . , b

[ri]
i∗

]
. The variables qi, ri denote the starting and

ending frame number for object oi∗.

Every object can be divided into multiple training examples, where each sample is T

frames long. We can use object oi∗ to generate a training sample sji∗, which would be

defined by the subset sequence of the original annotation bji∗ =

[
b

[sj ]
i∗ , . . . , b

[ej ]
i∗

]
. Here,

sj, ej are the starting and ending frame numbers for the sample, and ej − sj + 1 = T . Also

note, bji∗ ∈ N 4T
0 , where x[t]

i∗ , w
[t]
i∗ ∈ [0,W − 1], and y[t]

i∗ , h
[t]
i∗ ∈ [0, H − 1], where W,H are

the resized width and height of the video input to the network. Wherever needed, a sample

would be denoted as s[sj ,ej ]
i∗ ≡ sji∗. Hence, temporally consecutive samples for a particular

object oi∗ could be
{
s

[5, 20]
i∗ , s

[21, 36]
i∗ , . . .

}
.

Each space-time anchor (see §3.3.1) in the model is indexed by k ∈ [1, 8732], and it

produces a localization prediction pk, and a classification prediction ck or an objectness qk.

Every ground-truth sample sji∗ is associated to one of these anchors by maximizing the time

volumetric bounding box overlap (the intersection over union between all pixels across T

frames in the anchor and the object’s bounding box). In practice, we find the best matching

object for each of the 8732 locations. If the matching overlap is above 0.5, the anchor
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is considered as a positive sample. To avoid missing objects, in addition we consider the

anchor with the highest overlap with an object to be also marked as a positive sample. If the

anchor at k is associated with a ground-truth sample sji∗, then the prediction produced from

that anchor would be referenced by pi,jk , and ci,jk . The predictions produced from a majority

of anchors would not be associated to any ground-truth, and would be indicated as p−k , and

c−k . Predictions pk and ck are produced by a simple convolutions and non-linearities over a

common fk feature representation4. These operations can be expressed as pk = Wkfk and

ck = Ukfk. Note that the feature representation f i,jk , which is used to compute pi,jk , ci,jk ,

could be seen as feature representation for the object sample sji∗.

3.4.1 Localization Loss

In order to spatio-temporally localize objects, the loss function would need to minimize

some distance metric between pi,jk and bji∗. The simplest loss would be to directly com-

pute
∥∥pi,jk − bji∗

∥∥
F

after normalizing values to [0, 1]. Our initial experiments showed that

this is a hard loss to minimize, hence, we would adopt the same output parameterization

used in recent image object detection works [5, 14, 4, 10], where for each bounding box

the network is trained to predict a scale-invariant offset from the space-time anchor cen-

ter, and the ratio of height/width relative to the anchor in log-space. To compute these

parameterizations, the center location of the sample sji∗ needs to be computed in all frames

t ∈ [sj, ej]:

	 [t]i∗ = x
[t]
i∗ +

(
w

[t]
i∗ − 1

)
/2, 	[t]

i∗ = y
[t]
i∗ +

(
h

[t]
i∗ − 1

)
/2 (3.1)

The anchor that is associated to this sample would also have an anchor center
(

	 i,[t]kΨ , 	
i,[t]
kΨ

)
,

and an anchor width/height wi,[t]kΨ , h
i,[t]
kΨ . Symbols (•)i,[t]kΨ , refer to some variable for the

anchor k, which is associated with ground-truth bounding box b
[t]
i∗ . Currently we are using

4The feature representation fk is produced by a non-linear operation over the corresponding location on
the convolutional feature map output.
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spatio-temporally rectangular anchors, hence the anchor center, width, and height does not

change from one frame to the next, but we will use this notation for generality. Given

these values for ground-truth and the corresponding anchor, we compute offsets for the

ground-truth to the anchor on every frame:

δ
[t]
x,i∗ =

(
	 [t]i∗ − 	 i,[t]kΨ

)
/w

i,[t]
kΨ , δ

[t]
y,i∗ =

(
	[t]
i∗ −	

i,[t]
kΨ

)
/h

i,[t]
kΨ , (3.2)

δ
[t]
w,i∗ = log

(
w

[t]
i∗/w

i,[t]
kΨ

)
, δ

[t]
h,i∗ = log

(
h

[t]
i∗/h

i,[t]
kΨ

)
(3.3)

The network would produce a prediction pi,jk ∈ R4T relative to this anchor k. The list

of values in the prediction would be pi,jk =

[
p
i,[sj ]
x,k , p

i,[sj ]
y,k , . . . , p

i,[ej ]
h,k

]
. The localization

loss is computed by a smooth `1 metric between the ground-truth and prediction offsets:

Lloc
(
pi,jk , b

j
i∗
)

=
1

4T

ej∑
t=sj

∑
l={x,y,w,h}

smooth`1
(
p
i,[t]
l,k , δ

[t]
l,i∗

)
(3.4)

smooth`1 (v1, v2) =


0.5(v1 − v2)2 if |v1 − v2| < 1

|v1 − v2| − 0.5 otherwise
(3.5)

As described above, pi,jk = Wkf
i,j
k . Hence, given just the feature representation f i,jk , the

actual bounding box prediction for object sji∗ can be computed by inverting the formulas in

Eq. 3.2, 3.3, and 3.1:

	 [t]i = p
i,[t]
x,kw

i,[t]
kΨ + 	 i,[t]kΨ , 	[t]

i = p
i,[t]
y,k h

i,[t]
kΨ +	i,[t]kΨ , (3.6)

w
[t]
i = w

i,[t]
kΨ exp

(
p
i,[t]
w,k

)
, h

[t]
i = h

i,[t]
kΨ exp

(
p
i,[t]
h,k

)
, (3.7)

x
[t]
i = 	 [t]i −

(
w

[t]
i − 1

)
/2 , y

[t]
i = 	[t]

i −
(
h

[t]
i − 1

)
/2 (3.8)
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3.5 Classification Loss

With each spatio-temporal localization, the network also needs to predict the class of the

object. This can be done by training the prediction layer with a (M + 1)-way softmax

classification layer ck =

[
c0,k, . . . , cM,k

]
. For ImageNet Vid M = 30 (see §3.2). Each

anchor k’s ground-truth object class label would be denoted as ck∗ =

[
c0,k∗, . . . , cM,k∗

]
:

cl,k∗ ∈ B 5. If anchor k is associated with an object sample sji∗, it should predict its object

class, i.e. cl,k∗ = 1 iff si∗ belongs to class l. In case anchor k is not associated with any

object, then it should predict cl=0,k∗ = 1 (note, l = 0 denotes ‘background’). Hence,

∀k,
∑M

l=0 cl,k∗ = 1. The cross-entropy loss for the softmax classification layer is,

Lclsf(ck, ck∗) = −
M∑
l=0

cl,k∗ log

(
ecl,k∑M
l′=0 e

c
l′,k

)
. (3.9)

3.5.1 Objectness Loss

The detection pipeline above can be trivially extended to generate proposals. Rather than

asking the model to classify an object into one of the pre-defined classes, the network can

be trained to discriminate between objects and the background. Currently our model only

has a classification loss, but we provide this exposition for completeness. The architecture

can be changed by using a two-class softmax layer for classifying whether each prediction

belongs to an object or not. This typically is referred to as an objectness score [48, 45].

Alternatively, the model can be trained to regress a single value by logistic regression. If an

anchor k is associated with a ground-truth sji∗, the ground-truth objectness score qk∗ = 1;

otherwise qk∗ = 0. The classifier prediction can be represented as follows,

Ukfk = qk =
[
qk+ , qk−

]T (3.10)

5B denotes the class of binary numbers.
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Now cross-entropy loss for the softmax classifier can be written as follows

Lobj(qk, qk∗) = −qk∗ log

(
eqk+

eqk+ + eqk−

)
− (1− qk∗) log

(
eqk−

eqk+ + eqk−

)
, (3.11)

where the first half of the equation penalizes low objectness score despite the presence of

an object, and the second half of the equation penalizes high objectness score when no

object is present.

3.5.2 Training Scheme

The training starts by selecting a video V, and randomly selecting a T frame sample. Each

sample’s T frames are forward passed through the network. Training proceeds by finding

which anchors are associated with any available ground-truths as described in §3.3.1. This

results in some anchors being associated with some object (qk∗ = 1), and most are asso-

ciated with the background (qk∗ = 0). Since there are a lot more negative anchors than

positives, we employ hard negative mining to pick 3 negatives samples for every positive

chosen (for all experiments except focal loss experiments). This positive/background sam-

ple ratio is similar to RPN training [5]. Moreover, we also ensure that we select at least 5

negative anchors from each sample, so that we get some learning signal when the frames

do not have any objects present in them. Once we know which anchors to use for training,

the model can be optimized using the following loss:

L(qk∗, ck, ck∗, p
i,j
k , b

j
i∗) = Lclsf(ck, ck∗) + qk∗ · Lloc

(
pi,jk , b

j
i∗
)

(3.12)

The majority of samples would be associated with no ground-truth i.e. qk∗ = 0. These sam-

ples would just activate the objectness loss Lclsf(•), and be trained to predict background

over those anchors. We minimize this loss function using stochastic gradient descent.

In most of our experiments, each mini-batch contain 16 video samples, unless stated

otherwise. Every mini-batch gets samples from randomly chosen videos. Although we
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make sure that samples are not chosen in a way to bias learning toward certain object

classes or certain videos. This happens because some samples occur much more frequently

than others (there are only 67 tracks for tigers, but 1,246 for cars in ImageNet Vid training

set), and some videos are longer than the rest. To tackle this, at the start every epoch, we

pick a maximum of 15 samples per video, and limit the number of samples containing a

certain category to 10,000.

3.6 Testing

At inference time, the network iterates over all T frame windows and incrementally builds

object track proposals. Each T frames input to the network generates object detections,

which are matched to the tracks and kept in memory. Object tracks are naturally created

and eventually die as a result of the object matching process.

Every iteration the network is input T consecutive frames, which are resized to the reso-

lutionW×H . The network would produce some localization/objectness predictions which

are first pruned by a low confidence threshold of 0.01. This is followed by non-maximal

suppression using the average per-frame overlap between object localizations (following

the methodology in image detection algorithms [5, 14]). The reduced set of detections are

sorted by their objectness score.

Now let’s suppose the network had already produced detections on all frames preceding

this set of T frames, and they have been used to generate tracks. The next step is to match

the current set of detections to all the active tracks in the video. This matching is simply

done by bipartite matching separately over all valid object classes. So, for instance, only

‘dog’ detections can be matched to ‘dog’ tracks. This also reduces the bipartite matching

complexity - allowing us to run this tracking scheme at well over 100 frames per second.

To reduce false positive tracks, we employ two schemes to filter tracks. After tracks

don’t get matched to any detections, the track naturally dies. It add some robustness to the
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tracking process, we employ a kalman filter to keep predicting the localization for tracks

not matched to detections. We kill the track once it doesn’t get matched for the third

consecutive time. Note that this implies that the track can stay alive for 2T frames before

it is marked as dead. Once the track is killed, we decide whether it was a valid track based

on two criterion. If the average confidence of all the detections associated with that track

were below a certain threshold, the track is marked as invalid. Secondly, if the final track

length was below a certain number of frames, it is also marked invalid in this case. All

tracks surviving this filtration processes are kept as the final set of tracks.

Most proposal generation methods perform inference in a batch [71, 80, 82, 84], or

have to make multiple passes over videos before giving the final result [124]. Note that the

inference in the proposed algorithm is run on-line, and can produce results with a delay of

T frames.

3.7 Evaluation Metrics

3.7.1 Evaluating Space-time Proposals

For every video Vu in the validation/testing dataset, we have a set of objects
{
ou,1∗, . . . , ou,mu∗

}
.

The annotation for each object ou,i∗ is represented as
[
b

[si]
u,i∗, . . . , b

[ei]
u,i∗

]
, where each

bounding box b
[t]
u,i∗ ∈ N4

0, and su,i, eu,i are starting and ending frame numbers for the

ground-truth. The forward pass of Vu through the network produces a set of nu variable

length object tracks/video proposals
{
ou,1, . . . , ou,nu

}
. Each video proposal ou,k, running

from frame su,k to eu,k, has bounding box predictions
[
b

[sk]
u,k , . . . , b

[ek]
u,k

]
. Given two

bounding boxes b[t]
u,i∗, b

[t]
u,k in the same frame, we can compute the intersection and union
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quantities as follows,

∣∣∣b[t]
u,i∗ ∩ b

[t]
u,k

∣∣∣ = max
(

0, min
(
x

[t]
u,i∗ + w

[t]
u,i∗, x

[t]
u,k + w

[t]
u,k

)
− max

(
x

[t]
u,i∗, x

[t]
u,k

))
×max

(
0, min

(
y

[t]
u,i∗ + h

[t]
u,i∗, y

[t]
u,k + h

[t]
u,k

)
− max

(
y

[t]
u,i∗, y

[t]
u,k

))
(3.13)∣∣∣b[t]

u,i∗ ∪ b
[t]
u,k

∣∣∣ = w
[t]
u,i∗h

[t]
u,i∗ + w

[t]
u,kh

[t]
u,k −

∣∣∣b[t]
u,i∗ ∩ b

[t]
u,k

∣∣∣ (3.14)

Image object proposals are typically evaluated using overlap score (intersection over

union / jaccard index) [45]. A similar overlap score can be computed between a video

proposal ou,k and a ground-truth ou,i∗ can be computed in two different ways. As used

in [6], one can compute an average of all overlaps per frame as follows,

J1

(
ou,i∗,ou,k

)
=

1

Ti,k

min(eu,i, eu,k)∑
t=max(su,i, su,k)

∣∣∣b[t]
u,i∗ ∩ b

[t]
u,k

∣∣∣∣∣∣b[t]
u,i∗ ∪ b

[t]
u,k

∣∣∣ , (3.15)

where Ti,k = max(eu,i, eu,k)−min(su,i, su,k) + 1 .

This overlap score penalizes all frames equally, regardless of whether the object was small

or large in a particular frame.

For some applications it is important to have a score where the penalty is proportional to

the size of the object in a frame. Many vision systems would require more accurate predic-

tion of objects when nearby and, hence, occupying relatively larger portion of the receptive

field (think of self-driving cars recognizing nearby cars, or a robot trying to manipulate

objects in reach). For such applications, it is important to weight overlap of proposals with

the ground-truth according to its size in a specific frame,

J2

(
ou,i∗,ou,k

)
=

∑min(eu,i, eu,k)

t=max(su,i, su,k)

∣∣∣b[t]
u,i∗ ∩ b

[t]
u,k

∣∣∣∑eu,i
t=su,i

w
[t]
u,i∗h

[t]
u,i∗ +

∑eu,k
t=su,k

w
[t]
u,kh

[t]
u,k −

∑min(eu,i, eu,k)

t=max(su,i, su,k)

∣∣∣b[t]
u,i∗ ∪ b

[t]
u,k

∣∣∣ .
(3.16)
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We would use this IoU metric for evaluating our models in §3.8.

As typically done in image object proposal methods, for each ground-truth a single

maximum overlap score is selected across all video proposals,

J
(
ou,i∗

)
= max

k
J
(
ou,i∗,ou,k

)
(3.17)

Now, a single average overlap number can be easily generated by computing the maximum

overlap for each ground-truth object across all videos, 1∑
umu

∑
u,i J

(
ou,i∗

)
. Note,

∑
umu

is the total number of object ground-truths in the complete dataset. This score can easily be

adjusted to weight objects which have longer tracks if it is important to measure long-term

tracking performance.

Recall is another popular measure to gauge ability to generate object proposals, given

a fixed overlap threshold TJ . It can be computed as 1∑
umu

∑
u,i

[
J
(
ou,i∗

)
> TJ

]
, where

[•] is the iverson bracket notation. It might be useful to penalize recall more for incorrect

localizations on longer tracks — which would happen when a method fails to track an

object for extended periods:

RTJ =

∑
u,i

[
J
(
ou,i∗

)
> TJ

]
(eu,i − su,i + 1)∑

u,i eu,i − su,i + 1
(3.18)

We compute a class agnosticR.5 for all our experiments in §3.8.

Since recall is based on a single threshold TJ , it either rewards loose localization (at

low TJ ) or penalizes reasonable proposals missing some extremity of an object (at high

TJ ). Hosang et al. [45] demonstrated that averaging recall in the range [0.5, 1.0] not only

remedies this problem, but correlates closely with detection performance. Recently, av-

erage recall has been adjusted to operate in the range [0.5, 0.95] for the Microsoft COCO

challenge [125] — this avoids penalizing methods at recall thresholds closer to 1.0. It is

possible to extend these benefits to benchmarking video proposal methods by averaging the

recall score given in Eq. 3.18.
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Every proposal also has an average objectness score qu,k computed by aggregating ob-

jectness scores over all Lu,k predictions made for that video proposal ou,k:

qu,k =
1

Lu,k

Lu,k∑
j=1

qju,k+

qju,k+ + qju,k−
(3.19)

This score can be used to sort all video proposals by confidence. This is useful for observ-

ing overlap and recall measures when limited to a certain number of proposals — better

scoring functions will allow high overlap and recall even with a low limit on the number

of proposals. Given a certain threshold Tn for the number of proposals that can be chosen

per video, qu,k can be either used to select top Tn scoring proposals, or as a distribution to

sample proposals from per video. To compare competing proposal methods recall and av-

erage overlap can be plotted against varying Tn. Successful methods would not only have a

good limit performance (where Tn =∞), but also perform well when allowed only a small

number of proposals. For our experimental results in §3.8, we show R.5 scores at both

Tn = ∞ and Tn = 10. We found in our experiments that 10 proposals/detections reaches

quite close to the limit performance of the model.

Using these metrics, the proposed method would be compared to competing video pro-

posal methods, such as [80, 71, 6, 73].

3.7.2 Evaluating Detection Performance

Image detectors are evaluated typically using the mean average precision (mAP) metric [49,

13]. It is designed to penalize detector outputs which misses object instances, duplicate

predictions, and generates false positives. Average precision (AP) is computed individually

for each object category in the dataset, and then averaged across categories to give mAP.

The recall score in §3.7.1 can be easily extended to compute average precision for video

object detectors.

A scheme was described how to extend the proposed video proposal architecture to
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predict object classifications §3.4. During inference time (see §3.6), the method produces

classification predictions every T frames for an object track. These classifications need to

be aggregated to produce a single classification per object track. One possibility is to sum

normalized classification scores output from the softmax layer, similar to the aggregation

of confidence scores (see Eq. 3.19). We instead take a more simple approach. While

attempting to stitch together T frame detection predictions, we only consider objects of

the same category in the matching process. This naturally generates tracks for one object

category at a time - and the process also dictates what is object class of the track.

Given the set of all video proposals, ground-truths, and their classes, we can compute

recall and precision over all videos. Recall STconf, TJ is the fraction of ground-truths which

were correctly detected given an overlap threshold of TJ , above a prediction confidence of

Tconf. Similarly, precision PTconf, TJ is the fraction of detections that are correct. They can

be computed for each class label l as,

STconf, TJ (l) =

∑
u

∑
∀k : cu,k�=l

[
qu,k > Tconf

] ou,k has a matching ground-truth of class l︷ ︸︸ ︷[
∃i ∈ Il,u∗ : J

(
ou,i∗,ou,k

)
> TJ

]∑
u

∣∣Il,u∗∣∣ ,

(3.20)

PTconf, TJ (l) =

∑
u

∑
∀k : cu,k�=l

[
qu,k > Tconf

] [
∃i ∈ Il,u∗ : J

(
ou,i∗,ou,k

)
> TJ

]∑
u nu

,

(3.21)

where Il,u∗ is the set of class l ground-truths in a video Vu, i.e. the set of ground-truths sat-

isfying this condition
[
l = arg maxl′ ∈ [0,...,M ] cl′,u,i∗

]
(see §3.4). Hence,

∣∣Il,u∗∣∣ refers to the

number of class l ground-truths in video Vu. The set {∀k : cu,k� = l} indicates only video

proposals in Vu classified with category l. Note, that the term
[
∃i ∈ Il,u∗ : J

(
ou,i∗,ou,k

)
> TJ

]
can only be activated once across all video proposals with label l, i.e. there is one-to-one

matching between video proposals and ground-truths. Note that precision/recall measures

can be extended to penalize methods having false-negatives for ground-truths with longer
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tracks (similar to Eq. 3.18).

Given recall and precision at a range of confidence thresholds Tconf, average precision

ATJ (l) for class l can be computed by the scheme described in [49] — which is similar

to taking the area under the precision-recall graph. As briefly mentioned before, average

precisions can be averaged across all classes l ∈ {1,M} 6 to produce mAP score, i.e.

1
M

∑
lATJ (l). Similar to the average recall score for proposals, mAP can also be averaged

across a range of thresholds TJ [125]. This more accurately measures a detectors per-

formance for correct classification and localization. For our experiments in §3.8, we give

mAP score at threshold TJ = 0.5, and an averaged mAP at 10 equally spaced thresholds

in the range [0.5, 0.95], a scheme which was made standard for Microsoft COCO detection

challenge [125].

3.8 Results

This section gives detailed ablation studies for the video object detection model presented

in this chapter. All models tested are 3D convolution variants of ResNet-34 [92] - where

the number of 3D convolutions depends on the number of input frames the model is trained

for. All experiments were done using ImageNet Vid training and validation. Details about

the dataset are given in §3.2. Every experiment after §3.8.2 also uses motion simulated

samples from ImageNet Detection [13]. Also, the weights of all video models are initialized

using the single frame detector for all layers that are common between the two models.

3D convolutions are initialized from 2D weights using the inflation technique described

in [115]. All models are trained for 90-100K iterations using stochastic gradient descent.

Each model is trained with a batch size of 16, unless specified otherwise (models with larger

number of input frames have a higher memory footprint). The input frames are resized to

600x600, and we use horizontal flips, color jittering in HSL space, and random cropping

6Background class l = 0 is not used for computing precision-recall measures.
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augmentations during training. All results are based on outputs from a single trained model

(no model ensembles).

For each experiment, we give several metrics for evaluating performance. As an exam-

ple we would refer to the metrics given in Table 3.7. For each model we first specify the

total number of learnable parameters in the model, as well as the number of 3D convolu-

tional operations. For some experiments the number of training samples might be larger

than other experiments, hence we specify the number of samples whenever useful for anal-

ysis. We also give the final training and testing losses - which is useful to observe when

comparing models with the same loss, as well as getting a sense of the generalization gap.

We also give the contribution of the localization and classification loss in the total loss. As

mentioned in §3.7.1, we give the final IoU J2

(
ou,i∗,ou,k

)
achieved over anchors matched

to objects on all validation samples. The classification accuracy measures a model’s ability

to correctly classify the object as one of the M positive classes. For a detector, of course

this does not paint the complete picture since the model also needs to separate object from

background. To get a sense of performance on this task, we also give the “+ve objectness

accuracy” and “-ve objectness accuracy.” These numbers show the percentage of positive

and negative anchors in validation samples the model is able to correctly classify respec-

tively. We also give the average number of detections each model produces after NMS,

and the percentage of objects it was able to recall at the overlap threshold 0.5 in a class

agnostic way (R.5). Since it can be hard to compare recall of different models producing

varying number of detections, we also give the recall when you select 10 highest scoring

detections.

The gold standard metric for detection performance is mAP, as described in §3.7.2.

We compute mAP at an overlap threshold of 0.5, as well as the average over the range

[0.5, 0.95], where the IoU is computed over all the T frames the detector is trying to predict

for (J2

(
ou,i∗,ou,k

)
). To compare to single frame detectors, we also consider each multi-

frame detector’s output over each frame individually and compute the single frame mAP at
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overlap threshold of 0.5.

3.8.1 Effect of Normalizing for Localization Loss

In this experiment we train two models, both accepting a 3 frame input, and producing

object detection predictions over all 3 frames. The difference between the two models

is that one uses is the loss defined in Eq. 3.12, wheres the other model is trained with a

localization loss which is normalized by the number of frames:

L(qk∗, ck, ck∗, p
i,j
k , b

j
i∗) = Lclsf(ck, ck∗) +

1

3
· qk∗ · Lloc

(
pi,jk , b

j
i∗
)

(3.22)

Table 3.3: Effect of normalizing loss with the number of frames being predicted for. Both
models were trained for 3 frame input, and make predictions over all 3 frames.
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No normalization 29.1M 3 2.69 5.27 2.37 2.90 .801 .731 .446 .961 19 .903 .876 .598 .599 .369
1/3 normalization 29.1M 3 1.76 3.69 0.82 2.87 .795 .738 .457 .960 18 .894 .870 .602 .602 .369

Table 3.3 shows results from this experiment. As expected, the total test loss and local-

ization loss is larger when not normalizing. But, interestingly it does not have any adverse

effect on the performance. Although, if we use an un-normalized loss for larger number of

frames, the localization loss might start to over shadow the classification loss, and perhaps

lead to a lower detection performance. Since we do not find any evidence of improve-

ment from an un-normalized localization loss, we choose to use the normalized loss for all

following experiments. This also allows us to easily compare the test loss across models

trained for different T .
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3.8.2 Motion Simulated Samples from ImageNet Detection [13]

Most competing methods for video object detection train for a single frame model, giv-

ing them access to many image datasets. Most methods working with the ImageNet Vid

dataset [12] choose to expand their training set with samples from ImageNet Detection

dataset [13]. This image dataset is a logical choice because all 30 ImageNet Vid categories

also exist in ImageNet Detection dataset. We also learned from training Image detectors on

ImageNet Vid that adding ImageNet Detection to the training set can add ∼ 4 mAP to the

detector’s performance.

In order to gain the benefit of ImageNet Detection, we would need to simulate video

samples from images. We adopt a simple scheme where we take an image, and crop a

moving a rectangle from the image so as to mimic some planar camera motion. The motion

pattern itself is sampled from the movement of objects in ImageNet Vid training. We need

to generate different number of frames T from each image depending on the network input.

Table 3.4: Effect of training with simulated video clips from ImageNet Detection [13]
training set, in addition to ImageNet Vid. All 4 models were trained for 3 frame input,
and make predictions for the middle frame, hence mAP.5 is computed over single frame
predictions.
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No ImageNet Det 28.7M 3 .27M 1.66 3.63 0.77 2.86 .806 .739 .448 .964 19 .904 .877 .613 .390
1 video clip/im 28.7M 3 .44M 1.86 3.39 0.76 2.63 .806 .761 .440 .962 37 .932 .886 .643 .403
2 video clip/im 28.7M 3 .62M 1.86 3.35 0.75 2.60 .807 .769 .442 .963 35 .935 .892 .653 .409
4 video clip/im 28.7M 3 .97M 1.92 3.36 0.76 2.60 .805 .765 .434 .966 43 .936 .884 .657 .413

Table 3.4 shows the effect of adding motion simulated samples from ImageNet Detec-

tion. To understand how much ImageNet Detection data is useful, we simulate varying

number of multi-frame samples from each image in the dataset. We observe that 4 samples

simulated from every ImageNet Detection image (the ones that have at least one object from
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theM overlapping classes) drastically improves the multi-frame detector performance. It is

apparent from both the classification loss and accuracy that adding samples from ImageNet

Detection greatly improves the class discriminative ability of the model. Although we also

see that we pay cost of decreasing +ve objectness score with increasing number simulated

samples. All models in the following experiments are trained with 4 motion simulated

samples per image.

3.8.3 More Convolution Layers before each Prediction Layer

Here we experiment whether adding more capacity to the model before each of the 6 predic-

tion branches improves detection performance. In our standard model, our first prediction

layer is preceded by a 256 channel convolution, and all other prediction layers are preceded

by 128 channel convolutions. We adjust this model by replacing all these 6 layers such that

each prediction layer is preceded by two convolutions (256 and 128 channels) with non-

linearities. One noteworthy downside to this experiment is that lesser number of weights

are initialized from the single frame model, because the new additional convolution layers

did not previously exist.

Table 3.5: Effect of adding more convolutional filters (with ReLU) right before each pre-
diction layer. The “standard model” has a single 128 or 256 channels convolutional layer
added to the main branch’s feature map before it is used to make a prediction. The “more
conv. layers” model has two convolutions (256 channels followed by 128) before it is used
to make predictions. Both models were trained for 3 frame input, and make predictions
over all 3 frames. 1.78M samples from ImageNet Vid + ImageNet Detection were used for
training.
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Standard model 28.8M 2 1.97 3.44 0.82 2.61 .793 .768 .440 .962 38 .922 .876 .645 .646 .393
More conv. layers 28.9M 2 2.19 3.51 0.85 2.66 .789 .759 .427 .964 41 .922 .876 .632 .633 .383

Table 3.5 shows the comparative results between the standard model, and the new model
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with additional convolution layers before each prediction layer. It is clear from the results

that adding layers with scratch weights before the prediction layers hampers the detec-

tors final performance. Even though, it is possible that training these additional layers for

the single frame detector, and using them as pre-trained weights, might improve the perfor-

mance of all models considered in our experiments. Due to the nature of the current results,

we choose to use the standard model for the experiments that follow.

3.8.4 Focal Loss [126]

Recently, Focal Loss [126] has been shown to improve performance of detectors based on

SSD-like architectures. This scheme is attractive because ROI-pooling based detectors [5,

89] are known to be slower due to the pooling operation - which SSD architectures avoid

by directly making detection predictions on multiple scale feature maps. The goal of Focal

loss is to direct the model’s loss more toward positive or negative samples which incur a

larger loss. It encourages using all the negative samples available rather than doing hard

negative mining. For our experiments we select 20 times more hard-negatives than positives

from each video sample. For all other experiments, we choose to sample only 3 negatives

for each positive.

Table 3.6: Effect of using focal loss [126] for the classification loss Lclsf(•). The focal loss
model was trained with γ = 1, and uses 20 times more negative samples than positives,
whereas the standard model, like in all other experiments, uses 3 times more negatives
than positives. Both models were trained for 3 frame input, and make predictions for the
middle frame, hence mAP.5 is computed over single frame predictions. 1.78M samples
from ImageNet Vid + ImageNet Detection were used for training.
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Standard model 28.4M 2 1.94 3.36 0.76 2.60 .805 .766 .455 .960 40 .934 .888 .652 .409
Focal loss γ = 1 28.4M 2 1.42 2.72 0.74 1.98 .808 .767 .451 .994 55 .949 .900 .654 .413
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Table 3.6 shows results of two models: one is trained with a standard loss, and another

uses focal loss with a γ = 1. We didn’t see any large differences when we change γ, so

we only report results from a single parameter. The results show that there is hardly any

positive effect of using focal loss. The only significant effect we see in the model’s ability

to classify negative anchors - which is expected because this model trains on 6.5 times

more negative samples than the standard model. Due to no statistically significant increase

in mAP, we choose to use the standard loss for all our other experiments. Our findings are

in line with other recent methods, like [127].

3.8.5 Middle Frame Prediction from Multiple Frame Input

The exposition given in §3.4.1, the network is trained to predict objects spanning over all the

input frames. One argument against this approach is that with the increase in complexity of

the input (more frames are input to the model), the output dimensionality has also increased.

We try to decrease the dimensionality of the output in this experiment by asking the network

to detect objects in the middle frame, given a T frame input. For instance, the 5 frame

model, which receives frames {0, 1, 2, 3, 4}, is trained to make predictions only on frame

2. In this experiment, the anchors are still constructed over all the frames, so the object

needs to have a significant overlap with the anchor over all input frames. This form of

prediction is equivalent to training the network to make just object localization predictions

in the middle frame.

We train 3 different models which accept 3 frame inputs, 5 frame inputs, and a 7 frame

inputs. All make prediction only at the middle frame. We compare the results directly to a

single frame object detector in Table 3.7. As mentioned in the table, different models are

trained with a slightly different setting for batch sizes due to GPU memory constraints. It is

clear that the detection performance drops with models with increasing number of frames.

This is expected since the input complexity has increased but the number of samples avail-

able has roughly remained the same. Only the 3 frame input model manages to do better
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Table 3.7: Experiments on models which accept different number of input frames, and
detect objects on the middle frame (hence mAP is computed over single frame predictions).
The “single frame” is the baseline model trained to detect objects given a single image. All
other models accept varying number of input frames and output detections on the middle
frame. The other difference is the batch size used for training models. The single frame
model was trained with a batch size of 32; both 3 frame and 5 frame input models were
trained with a batch size of 16, whereas 7 frame input model was trained with a batch
size of 12 samples. These choices were made considering the memory limitations of the 4
GPUs used for training.
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Single frame 28.3M 0 1.26M 1.80 3.33 0.74 2.59 .807 .763 .444 .964 39 .937 .893 .650 .410

3 frame inp. 28.4M 2 1.78M 1.94 3.33 0.75 2.58 .807 .768 .445 .964 43 .939 .891 .658 .414
5 frame inp. 29.1M 4 1.77M 2.06 3.47 0.77 2.69 .803 .753 .423 .964 47 .934 .882 .629 .390
7 frame inp. 31.7M 6 1.76M 2.21 3.46 0.79 2.67 .800 .761 .411 .965 50 .939 .879 .629 .387

than the baseline single frame model. The drop in performance over increasing number

of frames can be attributed to the a large drop in +ve objectness accuracy, even though

negative objectness accuracy is maintained. This implies that the models with more input

frames see a dramatic increase in false negatives, i.e. it confuses more objects as back-

ground. Fig. 3.4 shows the +ve objectness validation accuracy as training progresses over

each model. Apart from the 3 frame model, it is clear that both the 5 frame and 7 frame

model generates more false negatives over the training phase. This trend can also be seen

directly in the comparative graph for +ve objectness validation accuracy. This indicates

that models with more input frames increasingly fail to capture objects over any matching

anchor. This problem is partially due to more objects not getting matched to an anchor

with a higher overlap. This is a natural consequence of using space-time anchors which are

static in time.

Fig. 3.3 shows the detection analysis of the 3 multi-frame detectors [128]. This gives an

alternative view to our problem, and it shows that the increase in false negatives can be par-

tially attributed to localization problems. This is corroborated with decrease in localization
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(a) 3 frame input/1 frame output (b) 5 frame input/1 frame output (c) 7 frame input/1 frame output

Figure 3.3: Detection analysis [128] for 3/5/7 frame input-middle frame detectors, evalu-
ated in Table 3.7. These results were generated on input samples of lengths 3/5/7 frames
respectively from ImageNet Vid validation set. Each model generated detection results
over the middle frame given its multi-frame input. Each video was sampled with a stride
of 2 frames which gave a total of 85K samples.

accuracy in Table 3.7.

3.8.6 Multiple Frame Prediction from Multiple Frame Input

This section shows the results for detection models trained with a multi-frame input, with

localization output spanning all the frames. These experiments are similar to §3.8.5, except

that the localization in these trained models was done over all input T frames. Table 3.8

compares results for models trained for 3, 5, and 7 frame inputs to a single frame detector

baseline. Since all models predict localizations over T frames, mAP.5 and mAP.5:.95 val-

ues are not directly comparable across models. Hence, we also compute the single frame

mAP.5, which scores all detections on a per frame basis. Hence, a T frame model would

be scored for detections made individually on each of the T frames.

Like in Table 3.7, it is apparent that the same set of problems are faced by detectors

when predicting a multi-frame output. The false negatives produced by the network drasti-

cally increases (the +ve objectness accuracy drops by more than 10% between the 3 frame

and 7 frame model). Moreover, the localization and classification accuracy drops more

sharply compared to the experiments in §3.8.5. The rising train and test less is indicative

75



(a) +ve objectness accuracy during training (b) +ve objectness capture accuracy during training

Figure 3.4: These two graphs show the validation +ve objectness accuracy computed ev-
ery time after training on 15K samples. Both graphs show validation accuracy for all the
models in Table 3.7, which are trained on multiple frame input, but make predictions over
only the middle frame. The graph on the right gives the validation accuracy of the model,
which is the percentage of +ve anchors (see §3.3.1) correctly classified as objects. Since
many anchors can be associated to the same object, the graph on the right shows the ability
of the model to classify at least one for each object correctly.

Table 3.8: Experiments on models which accept different number of input frames, and
make video object detections (detections with space-time bounding boxes) in all the frames.
The “single frame”, like in Table 3.7, is the baseline model trained to detect objects given
a single image. All other models accept varying number of input frames and output detec-
tions on the middle frame. The same batch sizes were used as the experiments in Table 3.7.
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Single frame 28.3M 0 1.26M 1.80 3.33 0.74 2.59 .807 .763 .444 .964 39 .937 .893 - .650 -

3 frame inp. 28.8M 2 1.78M 1.90 3.42 0.82 2.59 .794 .771 .459 .961 31 .916 .877 .653 .654 .400
5 frame inp. 29.7M 4 1.77M 2.17 3.52 0.87 2.65 .784 .758 .435 .963 35 .907 .865 .628 .629 .373
7 frame inp. 32.7M 6 1.76M 2.30 3.66 0.95 2.71 .772 .749 .403 .965 49 .894 .845 .604 .607 .347

of these metrics as well. Note that the average number of detections produced by the 7

frame detector increased by 58% as compared to a 3 frame detector, while the single frame

detection performance dropped by 8% = .047 mAP points.

Fig. 3.5 shows that if we ignore for localization errors, class confusion, and background

confusion, all models have very similar ‘FN’ performance (errors purely made due to de-
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(a) 3 frame input/output (b) 5 frame input/output (c) 7 frame input/output

Figure 3.5: Detection analysis [128] for 3/5/7 frame detectors, evaluated in Table 3.8.
These results were generated on samples of lengths 3/5/7 frames respectively from Ima-
geNet Vid validation set. Each video was sampled with a stride of 2 frames which gave a
total of 85K samples.

tector not activating on objects). This performance is also similar to the middle frame

prediction models (see Fig. 3.3). But when we look at the mass of ‘BG’ it shows that the

model confuse positive object classes to the background, i.e. the number false negatives

increase even more dramatically than in the case of middle frame prediction models. More-

over, the error mass associated to localization errors also increases with increasing input

size, as it also apparent from the IoU metric in Table 3.7. Interestingly, the 3 frame model’s

classification layer seems to be performing better than the single frame baseline.

Fig. 3.6 shows the decrease in +ve objectness accuracy over validation samples as each

model is trained. Only the 3 frame model works on par with the single frame baseline.

Both 5 and 7 frame input models have a decrease in their ability to separate foreground

objects from the background.

We compare all the different multi-frame models in this experiment, as well as §3.8.5,

with the single frame baseline. Fig. 3.7 shows how the single frame mAP0.5 changes with

models trained with different number of input frames. It is clear that after a gradual rise for

a 3 frame input, there is a steady downward trend for detector performance for both middle

and multi-frame prediction. Interestingly, both 3 and 5 frame input multi-frame detectors

manages to match the middle-frame detector counterpart. If you look at the performance
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(a) +ve objectness accuracy during training (b) +ve objectness capture accuracy during training

Figure 3.6: These two graphs show the validation +ve objectness accuracy computed every
time after training on 15K samples. Both graphs show validation accuracy for all the mod-
els in Table 3.8. The models were trained with multi-frame input, and predict detections
spanning all input frames. For details see Fig. 3.4.

(a) Detector accuracy vs. # input frames (b) Detector accuracy vs. speed

Figure 3.7: These two graphs show how the accuracy of different models in Table 3.9
changes against the number of frames each model is trained for, or against the maximum
number of frames a model can process in a second on a single GPU.

against the speed of each model, the 3 frame multi-frame detector provides a nice perfor-

mance to speed trade-off. Its mAP performance is only a few points lower than the best

model (3 frame middle-frame detector), but is about 3 times faster when run in batch mode

over a single GPU. Table 3.9 collates all the performance metrics in a single table.
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Table 3.9: This compares the methods in Table 3.7 and Table 3.8 from the perspective of
both speed and accuracy. “Frames / sec / GPU” is the speed of each method when running
on a single GPU (Maxwell Titan X - 12G) wit the maximum batch size possible for each
method (the batch size is given under the column “Full GPU Batch Size”). To get a better
sense of the speed of each model in an on-line setting, we limit inference to a single sample
per batch - supposing a single stream of frames is available to the algorithm.
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Single frame 28.3M 0 .807 .763 .444 .650 28.69 24 12.49 0.89G
3 frame inp./1 frame outp. 28.4M 2 .807 .768 .445 .658 24.48 23 10.37 1.13G
3 frame inp./3 frame outp. 28.8M 2 .794 .771 .459 .653 71.04 23 28.50 1.13G
5 frame inp./1 frame outp. 29.1M 4 .803 .753 .423 .629 16.35 14 8.02 1.46G
5 frame inp./5 frame outp. 29.7M 4 .784 .758 .435 .629 78.65 14 37.95 1.47G
7 frame inp./1 frame outp. 31.7M 6 .800 .761 .411 .629 10.63 9 5.71 1.89G
7 frame inp./7 frame outp. 32.7M 6 .772 .749 .403 .607 71.19 9 35.98 1.89G

3.8.7 Detection + Tracking Results

This section uses the video detection models from §3.8.5 and §3.8.6, and gives results for

a complete detection + tracking pipeline over the length of each validation video in Im-

ageNet Vid dataset. Here we would define window as a set of frames over which one

of the detection models can produce video detections over all the frames. For instance,

for single frame models (given by a single frame baseline model or middle frame multi-

frame model §3.8.5), all windows would be of 1 frame long. All detection models which

produce results over multiple frames (§3.8.6) would use a window of T frames long. De-

tection + tracking results are generated in this section by producing detections for each

non-overlapping window, and then stitching detection results over consecutive time win-

dows using simple bipartite matching. For instance 7 frame input, 7 frame output detection

model would be used to generate video detection results for windows frames 1-7, then 8-

14, and so on. The process starts with creating tracks for all the detections in the first time

window. When the process produces detections for the second time window, we attempt to
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Tracking Video Object Detections Supervised
Video Object Detection

135

Frame 15-21Frame 8-14Frame 1-7

Bear1

Bear2

Bear3

Bear4
Bear5

Car1 Car2

Bird3Bird2Bird1

Figure 3.8: This example shows how tracks are generated from video object detections over
different time windows. The video detection model produces detections over 7 frames.
Note that since the model predicts object detections, each comes with object class predic-
tions. During tracking, our process only matches tracks to detections if they belong to the
same object category, i.e. a ‘bear’ track would not get matched to a ‘bird’ detection. The
association between tracks and detections is done using bipartite matching where the cost
of matching is 1-bounding box overlap. This process naturally creates new tracks (when
a detection is not matched to a track - like ‘Bird3’), and ends tracks (when a track is not
matched to any detection - like ‘Bear3’) when necessary.

associate each detection to the current set of tracks. All tracks that do not get any detec-

tions die. All detections that are not associated to any track, create new tracks. The process

continues till the end of the video.

The association between a track and the detection is done by computing the overlap

between the bounding box in the last frame of the track and the first frame of the detection

in the subsequent time window. To help get more accurate overlap scores, we use a Kalman

Filter to predict the next bounding box for each track, which is used instead of the actual

bounding box to compute overlaps with detections in the next time window. As illustrated

in Fig. 3.8, matching between tracks and detections only takes place when both of them

belong to the same object category.

During tracking we note that at times the detector would not produce a detection for

a certain object. To avoid the case of loosing track of objects intermittently, we allow the
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(a) Detection+tracking accuracy vs. # input frames (b) Detection+tracking accuracy vs. speed

Figure 3.9: These two graphs show how the video object detection+tracking accuracy of
different models in Table 3.10 changes against the number of frames each model is trained
for, or against the maximum number of frames a model can process in a second on a single
GPU. If the goal is to detect and track objects, these results give a sense of the number of
frames a model should be trained for to get the best accuracy against inference speed.

track of an object to continue in absence of a detections on two consecutive time windows,

i.e. a track is ended only if it is not associated with a detection over two successive time

windows. The Kalman filter predicts the state of the bounding box to get better matches to

any subsequent detections. Each track is only kept if the average confidence level predicted

by the detector is above a certain threshold. This threshold is tuned empirically for each

detection model to get the best accuracy. As a post processing step, all tracks are removed

which have a length of less than 30 frames.

We measure the tracking accuracy in two ways in this section. We compute a track-

ing mAP score which is similar to the detection mAP - the difference between the two is

in computing the overlap between the prediction and ground-truth. In detection mAP, as

shown in §3.7.2 the overlap is computed between the detection prediction and the ground-

truth which are both limited to the size of the time window T . If a ground-truth object does

not overlap the current time window, it is not considered for a matching. Whereas, for com-

puting a tracking mAP, all predictions over all the video frames are considered for matching

to each ground-truth track. The volumetric IoU between the two is computed considering

all the frames that both exist in. Note that a detection which predicts extra bounding boxes
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Table 3.10: This compares the methods in Table 3.9 from the perspective of both speed
and detection+tracking accuracy. The process to obtain full video object tracks across
the length of the video from a set of detections is explained in §3.8.7. The ‘Tracking
mAP’ metric is similar to a detection mAP metric (described in §3.7.2), except that the
score computed between tracks predictions and GT tracks is the volumetric IoU over all
the frames the prediction/GT exists. This allows us to naturally extend detection mAP to
measure the localization/classification/tracking ability of an algorithm. Tracking mAP.3:.95

is the mAP averaged over 14 different overlap thresholds. ‘Recall’ measures the number of
true-positives from the 1,309 GT tracks in the 555 videos in ImageNet Vid validation set.
The average track length of GT objects is 208.9 frames (∼ 8 secs - see Table 3.1).
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Single frame 28.3M 0 .650 28.69 .435 .566 .324 .438 .223 .304 .242
3 frame inp./1 frame outp. 28.4M 2 .658 24.48 .446 .572 .329 .442 .231 .309 .248
3 frame inp./3 frame outp. 28.8M 2 .653 71.04 .478 .584 .363 .448 .242 .290 .266
5 frame inp./1 frame outp. 29.1M 4 .629 16.35 .427 .547 .293 .402 .180 .265 .215
5 frame inp./5 frame outp. 29.7M 4 .629 78.65 .445 .568 .298 .402 .193 .248 .224
7 frame inp./1 frame outp. 31.7M 6 .629 10.63 .415 .513 .289 .380 .185 .253 .212
7 frame inp./7 frame outp. 32.7M 6 .607 71.19 .423 .519 .301 .363 .197 .221 .218

in frames where the ground-truth object track doesn’t exist would get heavily penalized for

this spurious localization in additional frames. Once the overlap between all object detec-

tions and ground-truths has been computed, the computation of mAP follows as done in

§3.7.2. This gives the tracking mAP metric - which can be computed at different overlap

thresholds. We also compute the COCO style [125] mAP combined metric which in our

case is averaged over overlap threshold 0.3 to 0.95, at 0.05 intervals. Given the overlap be-

tween predicted tracks the ground-truths, we also compute the recall percentage at different

overlap thresholds.

Fig. 3.9 compares quantitative tracking results for all of the 6 video detection models

used in the previous sections as well as the single frame detection baseline. It is important

to note that unlike the single frame detection performance in Fig. 3.7, the tracking mAP ac-

curacy of the multi-frame detectors is better than the middle-frame detector. This is largely
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because the correspondence decisions made by the network are better than the bipartite

matching across time windows. Also, it is worth noting that the 3 frame input/3 frame

output model gives 10% better tracking performance than the single frame baseline, while

being 2.5 times faster. Table 3.10 quantitatively shows the same tracking mAP metrics for

all different models, as well as the recall scores at the overlap thresholds of 0.3, 0.5, and

0.7. The 3 frame input/ 3 frame output is a clear winner over most of these metrics.

3.9 Conclusion

In this chapter we explored a fully convolutional pipeline for the task of video object de-

tection, which is trained to accept multiple frame inputs, and predict detections spanning

over all the input frames. This network naturally produces detections which can be seen as

tubelets, where the network learns to do correspondence over a short set of frames. This

can be seen as an end-to-end learnable pipeline to generate tracklets over a short num-

ber of frames. We also propose a simple scheme to generate long term tracks from these

detections by simple bipartite matching.

A conclusion we can draw from our experiments is that using more frames in 3D con-

volutional pipeline to detect objects is not guaranteed to improve the performance. We

observe that a 3 frame model performs marginally better than a single frame detector, but

then the performance gradually drops as models are trained with more input frames. A

large part of these errors can be attributed to the model’s inability to distinguish objects

from background when the number of input frames increases. Part of the problem lies in

the scale of ImageNet Vid dataset and the lack of diversity of videos. This leads to models

being more discriminative if trained with an additional dataset.

We conclude that for performing detection in videos, it is beneficial to construct a 3D

convolutional network and train it to produce predictions in form of short 3 frame tracklets.

In addition marginal gain in mAP, one can expect the method to be 2.5 times faster than
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traditional single frame detectors.
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Chapter 4

Self-Directed Incremental Learning

Children are amazing learning machines. In the domain of word learning, for example,

children acquire an average of 8 to 10 new words per day and reach a vocabulary of

60,000 words by adulthood [129]. Children accomplish much of their learning through

self-directed play, and a remarkable property of their achievement is the minimal amount

of explicit supervision they receive. An infant’s play is self-directed in the sense that they

pick up, examine, and put down toys of their own volition, and through this process they

acquire extensive object knowledge. In contrast to the volume of their self-directed percep-

tual inputs, the moments in which a supervisory signal is available, for example when an

adult names an object, are extremely rare. This stands in stark contrast to the dominant ob-

ject recognition paradigm in computer vision, in which datasets of images are extensively

annotated with object labels, requiring substantial labor and cost. In reaction to this real-

ity, many recent works have developed partially—or fully—unsupervised learning methods

meant to relieve the burden of annotation [130, 131, 132]. The goal of this chapter is to add

to this dialog by framing self-directed play as an alternative paradigm for object learning,

and by providing the necessary computational infrastructure and evaluation methodology

to tackle it experimentally.

In addition to its self-directed nature, infant learning is inherently incremental. During
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play, for example, an infant might pick up a toy duck and rotate it in depth while watching

it. The resulting sequence of frames contains clues to the shape, appearance, and identity

of the object. After losing interest, she might put down the duck and pick up a toy ball,

subjecting it to a similar pattern of visual interrogation. Once the duck has been put down,

however, its imagery is no longer available for learning. In contrast, modern deep learn-

ing architectures utilize a minibatch approach in which a random sample of frames that

cover a significant subset of the label space are processed simultaneously. This ensures

that gradient updates do not favor one object over another in moving collectively towards

higher accuracy. However, if data is fed incrementally to standard deep learners the result

is catastrophic forgetting, in which object representations developed early in training are

forgotten at the expense of more recent examples [133, 134]. Recent incremental learn-

ing works have developed methods based on distillation loss [135] and exemplars [136] to

address the catastrophic forgetting problem. However, these works assume that a ground

truth label is provided for every frame. In contrast, children are exploiting an inherently

weaker form of supervision during self-directed play. While the infant is examining the

duck, she knows that it remains the same object during the entire time she is holding it, but

she does not know its label. We refer to a consecutive ”chunk” of frames containing the

same object as a learning exposure. Figure 4.1 illustrates the scenario. Learning exposures

contain single objects and are delineated by pick up and put down events whose occurrence

times are known. When the infant picks up an object, she has to infer whether this is an

object she has seen before (in which case she is receiving a repeated learning exposure

from a familiar object, as in the case of the second exposure to object 7 in Figure 4.1), or

whether it is a new object she is seeing for the first time. This inference must be performed

without explicit supervision, as naming events occur too sparsely in time to be useful. This

observation leads us to define a novel problem of self-directed incremental learning: given

a sequence of learning exposures, the learner must incrementally construct object models,

and must solve the problem of correctly associating learning exposures with objects in the
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case of repeated exposures (when the same object occurs more than once).

Time

Object 7 Object 4 Object 7

Pick up Put down
Object Naming Event

Figure 4.1: One of our main assumptions of child play—their visual experiences primarily
consist of holding and examining objects. The labelling children receive is both very small
and very sparse relative to the amount of visual information.

From the perspective of self-directed learning, an infant’s first exposure to the world

of objects comes through the repeated manipulation of a relatively small set of object in-

stances in the form of toys, cups and other dishware, and assorted household objects [137].

These objects are often colorful, and their shapes can vary from simple to complex, includ-

ing both articulated (e.g. ring of plastic keys or dumptruck) and deformable (e.g. various

stuffed toys) objects [138]. We therefore focus in this chapter on the problem of recog-

nizing object instances, and defer to future work the construction of category boundaries

based on naming events and other cues. A key requirement for self-directed learning is

a means for generating a sequence of learning exposures. While modern deep learners

typically use randomly-selected subsets of unrelated images, we believe there is value in

reproducing the smooth changes in viewpoint and zoom generated by infants. For exam-

ple, there is evidence that infants are sensitive to motion cues and may use them in devel-

oping object models [139]. We choose to generate learning exposures through computer

graphics rendering. Synthesized images are playing an increasingly important role in deep

learning [140, 119, 141, 142, 143]. In contrast to finite datasets of real-world images, a

computer graphics approach affords the generation of an unlimited number of object im-

ages with full control over viewpoint, zoom, and lighting changes. This approach allows us

to address the problem of long-term learning with repeated exposures to objects that char-

acterizes infancy. We have created a system for data generation called CRIB—Continual
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Recognition Inspired by Babies, which can simulate the types of image sequences that in-

fants produce during self-directed play. See examples in Figures 4.2 and 4.3. In contrast,

recent works on incremental learning [136, 135, 144, 145] assume that every frame has a

category label and work with existing datasets, such as MNIST [146] and CIFAR [147],

which they organize to be processed incrementally. The goal of this chapter is to intro-

duce a novel, developmentally-inspired incremental learning problem, and a challenging,

easy-to-use system for data generation which can help to drive the research community in

advancing this important topic.

This chapter makes the following contributions:

1. We introduce a new and developmentally plausible incremental learning paradigm,

self-directed incremental learning, and evaluate the performance of incremental learn-

ing algorithms in this setting.

2. We perform extensive evaluation of the effects of catastrophic forgetting on incre-

mental learning algorithms over hundreds of unique learning exposures.

3. Complementing previous work in incremental learning, we take a step back from

the close focus on catastrophic forgetting and investigate the effect of repetition of

previously learned concepts on recognition accuracy.

4. We develop the CRIB data generating system that uses a curated set of 200 3D models

of toy-like objects.

4.1 Related Work

Most closely related to the current effort is the body of work in incremental training

of deep models focusing on the problem of catastrophic forgetting, the main problem in

the way of successful incremental learning algorithms. Authors have taken multiple ap-

proaches to incremental training of neural networks. Most relevant approaches exposes
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learners to two or more categories at a time from a single fixed dataset [148, 136]. Alter-

natively, the problem is treated from a transfer learning perspective, initially training on

one dataset then evaluating catastrophic forgetting when training on new data from either

entire new datasets or parts of datasets [135, 144, 145]. Although previous work has had

a significant effect of setting in motion the study of incremental learning, upon close re-

view of these works certain straightforward questions arise that we investigate in our work:

Are there possible ways to move away from the current assumption of using completely

labelled data towards a less supervised paradigm? Abandoning full supervision is the most

significant aspect of our self-directed incremental learning problem. To the best of our

knowledge, no previous incremental learning work has investigated this topic. What are

the effects of repeated exposure on catastrophic forgetting; can it mitigate forgetting in

incremental algorithms? We investigate this by evaluating recognition accuracy of incre-

mental learning algorithms on unique objects from our dataset, including a scenario with

repeated exposures of each object. What is the effect of using pre-trained models for in-

cremental learning rather than randomly initialized models? We empirically address this

question in § 4.5.

Datasets of objects have been created in the past and fall into two main categories:

image datasets of real objects, and of synthetic 3D models of objects. Known examples

of datasets of fixed images datasets are NORB [146] and COIL [149], and more recently,

CORe50 [150]—containing temporally continuous RGB-D videos of objects. Previous

works on synthetic 3D object categories such as ShapeNet [141] and instances such as

Sculptures [132] focus mainly on using 3D models to study aspects of 3D shape, leading

to significant progress in the domain [151]. Distinguishing the CRIBdataset from this pre-

vious work is the variety among the objects, the data generation API and the fact that all

objects are toy-like. The specific distinctions are outlined in Table 1.

Computer-graphics based methods, have been used to generate large amounts of train-

1CORe50’s annotation is coarse; bounding boxes are not tight around the object as it is rotating.
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Table 4.1: Characteristics of different datasets of objects that may be used for incremental
learning compared to CRIB. Below the horizontal line are characteristics especially rele-
vant to developmentally inspired incremental learning.

COIL [149] NORB [146] CORe50 [150] ShapeNet [141] Sculptures [132] CRIB

Category/Instance I C C C I I
Synthetic 7 7 7 3 3 3

Pose Labelling 3 3 7 3 7 3

Unlimited View Granularity 7 7 N/A 7 7 3

Data Generation API 7 7 7 7 7 3

Temporally Continuous 7 7 3 7 7 3

Exposure Tracking 7 7 7 7 7 3

Bounding box annotation 7 7 31 7 7 3

ing data for deep learning models. Examples include purpose built autonomous driving

simulators such as TORCS [152] and CARLA [153]. For semantic segmentation, Koltun

et al. [140] successfully showed that pixelwise labelled semantic segmentation data can

be generated from an open-world commercial video game, and easily annotated without

interaction with source code. For viewpoint estimation, Sheikh et al. [142] used 3D car

assets to generate 800,000 images. These works have started to address the domain shift

problem, with Koltun et al. showing comparable performance to models trained solely on

real world data by augmenting the synthetic data with only 30% real world data. Sheikh et

al. were within a small margin of error when tested on real data and got improved testing

performance when augmenting real data with their synthetic data. These results indicate

the potential impact of using synthetic data when obtaining and annotating real world data

is difficult. Similar to these works, because of the synthetic nature our data, a domain shift

exists between using CRIB and using real world data. In §4.5 we empirically show that

CRIB data is still visually challenging for incremental learning algorithms.

There has been a long-standing interest in developmentally inspired approaches to

robotics and learning [154]. Works, such as Gepperth et al. [155] and Kanan et al. [156],

share our motivation for biologically inspired incremental learning. But, our work in this

chapter is uniquely motivated by developmental psychology, and focuses on the evalua-

tion of incremental learning algorithms in greater time horizons—and only allows for one
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object in each learning exposure.

4.2 Approach

Our approach to the problem of self-directed incremental learning has three main elements.

First, we develop a data generator, a computer graphics simulator which can generate an

unlimited amount of the types of image sequences that children routinely produce and an-

alyze during object play in early infancy. Second, we formally define the self-directed

learning problem and present a solution which leverages existing approaches to incremen-

tal learning, and present the first empirical results for this challenging task. Third, we

conduct a series of experiments that highlight key aspects of self-directed learning and its

relationship to incremental learning methods based on deep networks. Our goal is to both

motivate and enable the computer vision community to tackle the self-directed learning

problem, which we will do by releasing our data generator and all supporting software on

our project website.

A key element in our approach is the data generator, a computer graphics simulator

which takes the place of the data loader in a deep network implementation and automat-

ically generates image sequences of objects based on a model of the object exploration

behaviors produced in early infancy. An example of the data generator output is illustrated

in Figure 4.3. Our decision to utilize rendered images of toy objects as our primary data

source is based on three considerations.

First, research has shown that infant’s play consists of repeated bouts of object exam-

ination in which a toy is picked up, rotated (frequently in depth) and possibly mouthed,

and then released. Infants can spend several hours per day in such object exploration ac-

tivities, over the course of many months. In order to train models on the image sequences

yielded by such play behavior, we need the ability to create images of objects over arbi-

trary rotation sequences and repeatedly generate a large number of such sequences for a
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single object. There is consensus that kinematic information, that is is visual information

provided through the motion of the object or the observer, is the basis for the perception

of form [157]. A relevant study [139] suggests that four month old infants are able to dis-

tinguish between old and novel objects more so when the objects are undergoing rotation

along an axis than when the object views are static.

Therefore we need to recreate the scenario in which an object might be picked up and

manipulated multiple times within a single play session or in a multitude of sessions. First

person data from play sessions has been gathered in developmental psychology studies

[138]. However, in addition to being very small and expensive to obtain, this data is low

resolution and with artifacts like overexposure and motion blur, resulting in the inaccurate

capture of the visual stimuli infants experience, leading to our second consideration. Ren-

dering enables the generation of an infinite quantity of high quality image sequences under

varying illumination and provides fine-grained control of rotation and zoom, making it an

extremely attractive solution for this scenario. In contrast, sequences of real-world object

images captured with a turntable would be rapidly exhausted after only a few bouts of play,

unless they were prohibitively large. Last, our decision is supported by the recent increase

in interest and successful use of computer graphics based approaches to tackle problems in

3D shape recognition [132], semantic segmentation [140] and viewpoint estimation [142].

4.3 The CRIB Data Generating System

Having a diverse set of toy-like objects is central to building CRIB. We collected 200

unique toy object models from the freely available library of Blendswap [158] where they

are available under CC licenses. The models we obtained are generally very distinct, with

significant visual differences between some, and slight similarities between others. A repre-

sentative set of these objects is shown in Figure 4.2. Our dataset includes synthetic replicas

of 30 specific objects instances used in research studies with infants [138].
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Figure 4.2: A rendering of approximately one third of the 3D models used by the CRIB
data generator. These toy-like objects were curated from Blendswap, and adjusted in a way
to appear visually diverse in shape and color.

CRIB is implemented in the open source and cross platform 3D graphics software

Blender. The built-in Cycles rendering engine is used for the rendering part of the data

generator. Blender shaders are composite functions indicating the texture and color char-

acteristics of the data. Specific shaders were developed to give the objects used by CRIBa

more toy-like, plastic appearance. These characteristics are evident in Figure 4.2. We im-

plement additional functionality in CRIB that allows for precise bounding box generation

and tracking of the amount of object surface shown in each rendered frame.

4.3.1 Incremental Learning Data Unit

For each learning exposure, the CRIB data generator creates a data unit—a temporally

continuous sequence of data. We encourage the reader to refer to the left part of Figure 4.3

to follow the basic description of how a data unit is generated. For an object model, a

lighting setting is chosen, and then the object rotated around its approximated center of

mass, generating different views of that object along its viewing sphere. Different views

are rendered by a camera placed above the object; resulting frames are depicted in the top

row of Figure 4.3.

Following is a detailed description of the data generation process. Generating a data unit

starts by rendering object frames with a zero alpha channel other than the object itself. To
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Rendered Object Frames

Background Frames

Data Unit Composite

Figure 4.3: Illustrating the three steps of data generation: 1. object rendering, 2. back-
ground selection, 3. foreground and background compositing.

render object frames, a lighting setting of either four point or three rod light sources placed

above the object is chosen. Each light is defined by a tuple (location, rotation, temperature,

strength). Location and rotation are slightly jittered, random values within a range that

produce a favorable visual result are chosen for strength, and within 4000-6000K (indoor

lighting range) for temperature. To generate the rotation of the objects, first a user specified

n random (x, y, z, s) = (azimuth, rotation, elevation, scale) points are generated, where s

is within a specified range of the original object scale. Temporally continuous rotations are

generated by linearly interpolating between the n points in arbitrary granularity, meaning

that the position of the object can change by a lot or by a little between every two frames.

The second step of generating a data unit consists of selecting a background image to

composite the object on top of. There are 8 groups of background scenes consisting of 25

objects rendered laid out on a floor in a cluttered manner. These scenes are used to generate

sequences of images with the camera above the objects moving left/right and then up/down

over time to loosely emulate head motion, as evident in the second row of Figure 4.3. Our

aim in doing this is to include a dynamic background environment, cluttered with different

objects from the one in focus. We ensure that the objects in the background are distinct

by choosing images from scenes where the object is absent. Finally, the background and

foreground objects are composited, and a very small amount of pixel wise noise is added.
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Testing Data:

The CRIB data generator is also required to generate testing data for object recognition.

To this end, the data generator provides a set of images of the target object where each

image has the object in rendered random (x, y, z, s). Each rendered image has a random

lighting assignment, with the same ranges possible as when generating data units. Our

goal in providing testing samples in this manner is to test the learning algorithm’s ability

to recognize the object in a manner invariant to a subset of the changes in infants’ learning

environments.

4.4 Self-Directed Incremental Learning

When trained incrementally, in every learning exposure learning algorithms receive la-

belled training data that is only available temporarily. The most important distinction of

the self-directed problem is that no labelling information is provided other than indicating

the start and end of a learning exposure. Allowing this kind minimum supervision is in line

with our developmental motivations, specifically the fact that children are inherently aware

of the start and end of the visual learning stimuli they receive. An additional important

aspect is that there is no finite limit beforehand on the total number of learning exposures,

in line with the vast amount of available to infants for learning. Our data generator allows

for this unconstrained temporal dimension to learning.

Having briefly revisited assumptions with regard to learning during self-directed play

in children in the introduction, we proceed to formally define the self-directed incremental

learning problem.

At each learning exposure k ≥ 1, the learning algorithm receives a new data unit from

CRIB. CRIB provides no labelling information with the sequence of images, and the data

unit may be of an object seen at learning exposure i such that 1 ≤ i ≤ k. The algorithm

is first required to successfully make a decision whether the current data unit is of a novel
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object or of an object that has been previously experienced. Once that step is complete,

if the decision is that a novel object is present, the algorithm’s parameters get updated

accordingly. If the decision is that an old object is present, an additional decision is required

to correctly relate one the previously seen objects with the object in the current learning

exposure. If this decision is made correctly, the algorithm can perform a parameter update,

reinforcing its knowledge based on this repeated exposure.

The first evaluation metric of interest is object instance recognition accuracy, which is

measured at the end of each learning exposure, in a way adapted from [136]. Let Sk denote

the set of unique objects seen until instance k without regard to repetition. Let a(i)
k indicate

the testing accuracy of an object i ∈ Sk. Object recognition accuracy after instance k is

defined as

Ak =
1

|Sk|
∑
p∈Sk

a
(p)
k . (4.1)

The reader can refer to Figure 4.4a for a visual example of how incremental accuracy

evolves over multiple learning exposures.

Another evaluation criterion is required to keep track of the number of errors made in

recognition of objects as old or new. High performance at this task is essential, since it is

a crucial step towards achieving good testing accuracy. High testing accuracy numbers are

impossible if the algorithm does not accurately track the unique objects it has seen. We

define three kinds of errors that can occur in this task and keep track of them as learning

progresses:

• Type 1: When exposed to a previously seen object, deciding it is new.

• Type 2: When exposed to a new object, identifying it as old.

• Type 3: When correctly deciding that an object is old, but failing to correctly relate

which old object is in the current learning exposure.
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4.5 Experiments

To clearly describe our baseline solution and position the self-directed incremental learning

problem and the CRIB data generator relative to previous work, we first briefly refer to

previous incremental learning solutions.

The Learning without Forgetting (LWF) [135] approach describes a strategy around a

standard convolutional network to address catastrophic forgetting for image classification.

First, for all new classes introduced in a new learning exposure, the fully connected layer of

the CNN is expanded by adding output sigmoid units. Second, distillation loss is applied

in to the old output units, keeping the network’s parameters from significantly changing

because of gradient backpropagation from new data.

The incremental Classifier Representation Learning (iCaRL) [136] approach builds

upon LwF by including explicit memory in the form of an exemplar set that is appropriately

managed as the algorithm encounters more learning exposures. iCaRL uses this exemplar

set to perform nearest exemplar mean classification in feature space. Briefly put, the infer-

ence procedure consists of computing normalized exemplar mean features per class using

the underlying CNN up to the fully connected layer as a feature map, and then classify-

ing by determining the nearest exemplar mean from the normalized feature of each testing

sample. Interestingly, training signal for backpropagation comes from the fully connected

layer, that still gets trained as in LwF.

We evaluate reference performance using CRIB on the following existing incremental

solutions, including slightly modified versions:

1. LwF - The standard Learning without Forgetting algorithm with distillation loss to

account for forgetting, but with binary cross-entropy loss for classification.

2. iCaRL-S-D - The reference iCaRL algorithm as described in [136] and in the begin-

ning of this section.

3. iCaRL-S-ND - The reference iCaRL algortithm but without distillation loss. Em-
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pirically we found that when varying the number of different classes per learning

instance, using only exemplars stored with ground truth labels rather than distillation

improved accuracy.

4. iCaRL-PT-ND - The reference iCaRL algorithm, starting from a ResNet-34 [159]

model pre-trained on iLSVRC-2014 classification dataset [160], trained without dis-

tillation loss.

4.5.1 Baseline Solution for Self-Directed Incremental Learning

As a baseline solution we implement two modifications to adapt iCaRL to the self-directed

incremental learning problem. First, since iCaRL’s exemplar management scheme operates

under the assumption that every new learning exposure contains data for new concepts,

modifications are required for repeated exposure. We modify the iCaRL algorithm to ap-

propriately manage the exemplar set when exposed to previous concepts. See supplemental

material for details.

Second, the iCaRL algorithm lacks a mechanism for learning without complete super-

vision. The algorithm operates under the assumption that in every new learning instance a

new concept will be introduced, and performs the specific architectural and explicit mem-

ory changes. In iCaRL specifically, a decision is required as to whether to add a new output

sigmoid unit—the case when a new concept is introduced, or to find which of the old sig-

moid units in the fully connected layer corresponds to the concept in the current learning

exposure and backward propagate gradients to train that unit—the case when an old con-

cept is repeated. We introduce two ways in which iCaRL can make this decision using the

incoming training data using a thresholding scheme:

• Using sigmoid unit values—first compute the mean sigmoid activation value for all

images in the current data unit. Choose the sigmoid with the maximum mean output,

and if it is above a certain threshold, infer that the current data is a repeated exposure.

98



If below, the data unit is of a new object.

• Using exemplar means—for all images in the current data unit, collect normalized

features using the penultimate layer of the network for all exemplar data, and com-

pute an exemplar mean over those features for each learned concept as in [136].

Similarly collect normalized features for all train images in a data unit and compute

the euclidean distances for each of these features from each of the exemplar means.

Then compute the mean of these distances over all images in the data unit and pick

the minimum mean distance value. If the value is below a certain threshold, infer

that the new data unit is a repeated exposure for an object corresponding to the ob-

ject instance whose exemplar mean was the closest, otherwise infer that the data unit

contains a novel object.

Thresholds used in both schemes were found as the optimal operating point from a

Precision-Recall analysis. The analysis was done on a binary classification problem of

identifying incoming data unit as an object that was previously encountered (positive class)

or a novel object (negative class) in a fully supervised setting with repeated exposure to

previously seen object instances.

4.5.2 Evaluation and Analysis

We perform three different incremental learning experiments using CRIB. In the first set-

ting, fully supervised single exposure we expose the learner to each object instance once—

an experimental setting similar to past work [136]. Our second experiment, fully supervised

repeated exposure, gives learners an object multiple times during learning, with the purpose

of investigating catastrophic forgetting in presence of repetition. Finally, we evaluate the

baseline performance of our solution to the self-directed incremental learning problem.

The algorithms used for establishing baseline performance on each incremental learn-

ing paradigm are iCaRL, iCaRL variants, and LwF where applicable. Both iCaRL and LwF
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Figure 4.4: (a) Performance of LwF and three variants of iCaRL when they are presented
with a single exposure for each object instance from CRIB200. Accuracy at each learning
instance is calculated using Eq. 4.1. The standard-deviation bars were computed over 3
runs for every experiment (except iCaRL-PT-ND on CIFAR 100, which is on 2 runs)—each
with different random orderings of objects. (b) shows similar trends when using CIFAR-
100 [147] for the two best variants of iCaRL.

and the self-directed incremental learning solution are implemented in PyTorch [161], us-

ing a ResNet-34 [159] as the backbone architecture. Specific hyper-parameters were tuned

for each algorithm; the details are included in the supplementary materials. Learning expo-

sures consist of data units that are 100 frames long and are generated by interpolating be-

tween three random points on the viewing sphere of an object, with scale smoothly varying

from 0.3 to 1.1 of the original scale of the object. Testing is done on 100 frames of random

object views, scale and lighting for each object that has been seen previously. This testing

is performed after each learning instance. All classifiers are trained and tested on positive

bounding box patches. During training random patches outside of the positive patch are

included in the training data as negative samples to allow for discriminative learning.

Fully Supervised Single Exposure:

In this setting algorithms are trained on 200 learning exposures, each being one data unit

of a unique object. iCaRL and its variations are allowed a memory of 2000 exemplars,

which equals 10% of the total data that will be made available to the algorithm. In [136]

when evaluating on CIFAR, the authors allow for 4% of the total data, meaning that our
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experiment provides more favorable conditions in terms of explicit memory allowed.

The results of this experiment are plotted in Figure 4.4a. All methods have a general

downward trend, which is similar to observations made on other datasets [136, 135]. This

trend can be partially attributed to catastrophic forgetting of classes which were seen early

on in the experiment, as well as the algorithm having to absorb an increasingly large number

of concepts over time. Results for the variants of iCaRL [136] show that exemplars can be

effectively collected from data units produced by CRIB. This allows iCaRL-S-D’s final

accuracy to be 4 times better than LwF. The results for iCaRL-S-ND show that the use of

distillation is not as effective as directly training with exemplar labels. Furthermore, the

experiment with iCaRL-PT-ND shows that test accuracy can be easily improved by using

a pre-trained model2. This finding is in line with other areas of computer vision, where

model pre-training plays a key role in improving baseline performance of algorithms. To

verify our findings, and confirm the difficulty of data generated by CRIB we repeat this

experiment with CIFAR-100 [147] with iCaRL-S-ND and iCaRL-PT-ND (see Figure 4.4b).

Fully Supervised Repeated Exposure:

In this section, we evaluate whether the four learning algorithms can exploit repeated expo-

sures to previously experienced objects. With this goal in mind, all algorithms are shown

50 unique objects over 200 data units, with each object appearing four times. For every

experiment run, we generate a random sequence of object instances such that all methods

see the same number of objects by any learning exposure. As mentioned in §4.5.1, the

variants of iCaRL were modified to function in this experimental setting.

Figure 4.5a shows the results for each method in this experimental setting. All learning

algorithms, except LwF, demonstrate some ability of using repeated exposures to improve

the classifier’s performance over time. The test accuracy of every iCaRL variant starts

consistently improving after seeing 45 different objects over 70 learning exposures. Inter-

2ResNet-34 [159] model pre-trained on iLSVRC-2014 classification dataset [160]
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Figure 4.5: (a) Performance of the four baseline algorithms on CRIB50 with repeated
exposures. Accuracy numbers and standard-deviation bars are computed similarly to the
experiment in Figure 4.4. The violin plots show the distribution of changes in test accura-
cies across all objects with respect to the gap in exposure to the same instance (b), and the
exposure count for a certain object (c). See the text for details.

estingly, the relative performance between different methods roughly remains the same as

the single exposure experiment. This is possibly because the relative learning capacity of

each method has not changed. Also noteworthy is iCaRL-PT-ND’s performance, which

is able to recover from an accuracy of 70% to reach a final value of 90%, which clearly

demonstrates the importance of pre-training for an incremental learner. Like the single ex-

posure experiment (see Figure 4.4), we expect a similar trend with pre-trained models on

other datasets.

The figures follow what might be expected of a naturally forgetting learning algorithm.

The trend in Figure 4.5b suggests that the learning algorithm benefits more from the re-

peated exposure of an object when it is seen after a long gap.

Self-directed Learning:

In this section we present baseline results on self-directed incremental learning using CRIB-

with 100 objects. As previously explained in §4.4, in this setting the learner does not have

access to the object label, and can only be sure about the permanence of the object in a

single data unit. In addition to evaluating whether the algorithm can make use of repeated
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Figure 4.6: (a) Performance on the self-directed learning paradigm for CRIB100 using the
approach described in §4.5.1. The results are shown for two variations on how a methods
decides which exposure is a new object, or which class an exposure belongs to. The supple-
mental material describes how accuracy is computed at each learning exposure. The plots
in (b) show how errors of different types (see §4.4) accumulate as the learning progresses.
The top graph shows errors when using sigmoids (red line (a)), and the bottom graph is
when using distances to exemplar means (blue line (a)).

exposures, we evaluate whether the algorithm can accurately build a set of unique classes

to match the true labels of objects (see §4.4). The random ordering of object instances and

number of exposures is the same as the repeated exposure experiment. In this experiment

we evaluate the performance of our baseline solution, presented in §4.5.1, with a pre-trained

initialization, since it is the best performing in our previous experiments.

Figure 4.6 shows the results for both variations of the self-directed learner explained

in §4.5.1. The plot shows that using distances to exemplar means is far better than using

sigmoids for making label decision for each incoming data-unit (in terms of final test accu-

racy). When we inspect errors, we observe that the sigmoid variant does not have enough

capacity to discriminate, which introduces errors at the start of learning. This deteriorates

the sigmoid based learner’s classifier to a chance performance when the experiment con-

cludes. On the other hand, the exemplar distance learner is able to gradually improve test

accuracy after 90 learning exposures. This improvement is also reflected in the distance

values, which is discriminative enough metric for the task of discovering new objects, and

for assigning repeated exposures to the correct old labels. This finding is supported by
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Figure 4.6b which shows that the distance learner adds very few type 1 and 2 errors as the

learner settles on a good feature representation.

4.6 Conclusion

We introduce a new incremental learning problem, supported from knowledge in develop-

mental psychology. To motivate work in this domain, we develop the CRIBdata generator

system, which has the ability to generate arbitrary amount of image sequences. This pro-

cess of collecting data is a clear departure from previous fixed datasets, which would help

facilitate research on incremental learning. One of the key paradigms we introduce in

this chapter is the problem of self-directed learning, which can be thought of as the un-

supervised learning equivalent in a developmental context. We conclude from our current

experiments that both repeated exposures to the same object instances and pre-training can

increase the performance of an exemplar based incremental learner.
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